
National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000

NASA/TM-1998-112233

Two-Dimensional High-Lift Aerodynamic
Optimization Using Neural Networks

Roxana M. Greenman
Ames Research Center, Moffett Field, California

June 1998

Available from the following:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161-2171
(301) 621-0390 (703) 487-4650

Acknowledgments

I wish to express my appreciation to Dr. Karlin R. Roth at NASA Ames Research Center for her

valuable advice and guidance throughout this study. I would also like to extend my appreciation to

Dr. James C. Ross, Dr. Stuart E. Rogers, and Dr. Charles C. Jorgensen at NASA Ames Research

Center. This work would not have been possible without their helpful discussions and sugges-

tions.

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute an
official endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics and
Space Administration.

iii

Contents

List of Tables vii

List of Figures ix

Nomenclature xv

1 Introduction 3

1.1 Background .4

1.2 Agile AI-Enhanced Design Process .5

2 Governing Equations 9

2.1 The Navier-Stokes Equations .9

2.2 Coordinate Transformation .12

2.3 Turbulence Modeling .16

2.3.1 Spalart-Allmaras Turbulence Model .16

3 Numerical Methods 19

3.1 Artificial Compressibility .19

3.2 Finite Differencing .21

3.2.1 Metric Terms .22

3.2.2 Convective Flux Differencing .22

3.2.3 Viscous Flux Differencing .24

3.2.4 Pseudo-time derivatives .24

iv

3.3 Computational Grid .25

3.3.1 Grid Generation Procedure .25

3.3.2 Grid Sensitivity Study .26

3.4 Boundary Conditions .27

4 Neural Nets 29

4.1 Analogy to the Human Brain .29

4.2 Artificial Neural Nets .30

4.2.1 Basic Structure of Artificial Neurons and Neural Networks30

4.2.2 History of Neural Nets .32

4.2.3 Current Applications of Neural Networks .33

4.3 Neural Network Operations .34

4.4 Levenberg-Marquardt Algorithm .35

4.4.1 Nonlinear Least Squares Optimization Problem .35

4.4.2 Derivation of the Levenberg-Marquardt Algorithm .37

4.5 Architecture of Neural Networks .39

5 Optimization 41

5.1 Optimization Methods .41

5.2 NPSOL Optimizer .42

5.2.1 Optimization Algorithm .43

5.2.2 Solution of the Quadratic-Programming Subproblem45

5.2.3 The Merit Function .46

5.2.4 Quasi-Newton Update .47

5.3 Optimization Procedure .47

6 Results and Discussion 51

v

6.1 Experimental Training Set .51

6.2 Computational Training Set .52

6.2.1 Learning Curve .54

6.2.2 Maximum Lift Criteria .55

6.3 Minimizing Training Data Samples .60

6.3.1 Subsets of Training Data for Six-Degree-Deflected Slat64

6.3.2 Mean and Standard Deviation .72

6.3.3 High-Lift Physics .77

6.3.4 Example of Neural Network Prediction .79

6.4 Optimizing Using Neural Nets .83

6.4.1 Optimization with Method 5 as Training Set .83

6.4.2 Optimization with Method 8 as Training Set .86

6.4.3 Optimization with Method 9 as Training Set .88

6.4.4 Optimization of Twenty-Six Degree Deflected Slat .91

6.4.5 Optimization With Large Design Space .95

6.4.6 Constrained Optimization .98

6.4.7 Summary of Optimization Runs .100

6.5 Benefits of New Process .102

7 Conclusions 109

7.1 Summary .109

7.2 Recommendations .111

Bibliography 113

vii

List of Tables

3.1 Grid dimensions used for grid sensitivity study .27

6.1 Design Space forδs = 6.0 degrees .84

6.2 Optimization Results forδs = 6 degrees with Method 5 as the Training Set85

6.3 Optimization Results forδs = 6 degrees with Method 8 as the Training Set88

6.4 Optimization Results forδs = 6 degrees with Method 9 as the Training Set90

6.5 Bounds of Design Variables for δs = 26.0 degrees .93

6.6 Optimization Results forδs = 26 degrees .94

6.7 Design Variable Bounds forδs = 6.0 with 5 values of flap deflection 95

6.8 Optimization Results forδs= 6 degrees with large design space and Method 1 as the Train-

ing Set .97

6.9 Constrained Optimization Results for Method 9 as the Training Set100

6.10 Neural Network Optimization Procedure Cost .105

6.11 Traditional Optimization Procedure Cost .106

ix

List of Figures

1.1 Typical civil transport with complex high-lift system. .3

1.2 Agile AI-enhanced design space capture and smart surfing. .4

1.3 Illustration of AI-enhanced design process. .5

1.4 Flap-Edge Geometry and definition of flap and slat high-lift rigging.6

2.1 Generalized transformation from the physical to the computational domain.12

3.1 Grid around three-element airfoil (every other point shown for clarity).26

3.2 Comparison of lift coefficient for grid sensitivity study. .27

3.3 Comparison of lift coefficient versus drag coefficient for grid sensitivity study. 28

4.1 Structure of biological neurons [29] (reproduced with permission of Prentice-Hall, Inc.,

Upper Saddle River, NJ 07458). .30

4.2 Simple artificial neuron model or processing element. The analogous biological neuron

terms are shown in parentheses. .31

4.3 A neural network with two hidden layers. .32

4.4 Architecture of neural networks with 15 nodes in each hidden layer.40

5.1 The three phases of the neural network optimization procedure.49

5.2 Optimization process in phase 3. .50

6.1 Neural network prediction of experimental data for ,gaps = 2.0%c, ols = -

0.05%c, , gapf = 2.7%c, olf = 1.5%c. .52

δs 6.0°=

δ f 39.5°=

x

6.2 Computational cases used to train the neural networks. .53

6.3 Learning curve of the neural networks used to predict the aerodynamics for high-lift set-

ting of , gaps = 2.0%c, ols = -0.05%c, , gapf = 2.1%c, olf = 1.0%c. This

case is not included in the training set.55

6.4 Average rms error for cases 1 - 27 for the six-degree slat deflection training set.56

6.5 Computational lift coefficient versus angle of attack for ,gaps = 2.0%c, ols = -

0.05%c, , gapf = 2.7%c, olf = 0.4%c. .57

6.6 Comparison of rms error for maximum lift criteria. .58

6.7 Neural net prediction with and without the pressure difference rule applied for ,

gaps = 2.0%c, ols = -0.05%c, , gapf = 2.7%c, olf = 0.4%c.61

6.8 Training data subsetsδs = 6(shaded boxes represent cases that are included in the training

set whereas the cases in the white boxes and parentheses are omitted).62

6.9 Summary of rms error from neural network prediction of aerodynamic coefficients

for Method 1. Shaded boxes indicate which flap configurations are contained in the training

data set. .65

6.10 Summary of rms error from neural network prediction of aerodynamic coefficients

for Method 2. Shaded boxes indicate which flap configurations are contained in the training

data set. .66

6.11 Summary of rms error from neural network prediction of aerodynamic coefficients

for Method 3. Shaded boxes indicate which flap configurations are contained in the training

data set. .67

6.12 Summary of rms error from neural network prediction of aerodynamic coefficients

for Method 4. Shaded boxes indicate which flap configurations are contained in the training

data set.68

δs 6.0°= δ f 29.0°=

δs 6.0°=

δ f 38.5°=

δs 6.0°=

δ f 38.5°=

xi

6.13 Summary of rms error from neural network prediction of aerodynamic coefficients

for Method 5. Shaded boxes indicate which flap configurations are contained in the training

data set. .69

6.14 Summary of rms error from neural network prediction of aerodynamic coefficients

for Method 6. Shaded boxes indicate which flap configurations are contained in the training

data set. .70

6.15 Summary of rms error from neural network prediction of aerodynamic coefficients

for Method 7. Shaded boxes indicate which flap configurations are contained in the training

data set. .71

6.16 Summary of rms error from neural network prediction of aerodynamic coefficients

for Method 8. Shaded boxes indicate which flap configurations are contained in the training

data set.72

6.17 Summary of rms error from neural network prediction of aerodynamic coefficients

for Method 9. Shaded boxes indicate which flap configurations are contained in the training

data set. .73

6.18 Mean rms errors for subsets of the training data for six-degree slat deflection. 74

6.19 Standard deviation of the rms errors for subsets of the training data for six-degree

slat deflection .75

6.20 Training data subsets forδs = 26 (shaded boxes represent cases that are included in the

training set whereas the cases in the white boxes and parentheses are omitted). 76

6.21 Mean rms errors for subsets of the training data for twenty-six-degree slat deflection. . 78

6.22 Standard deviation of the rms errors for subsets of the training data for twenty-six-degree

slat deflection. .79

6.23 Comparison of slat deflection aerodynamics: ,gaps = 2.0%c, ols = -0.05%c,

°

δs 6.0°=

xii

, gapf = 2.1%c, olf = 1.0%c, and ,gaps = 2.0%c, ols = -0.05%c, , gapf

= 2.1%c, olf = 1.0%c80

6.24 Comparison of aerodynamic characteristics for ,gapf = 2.4%c, olf = 1.1%cwhich is not

in the training set. .81

6.25 Optimization results for Run 5-B with modified configuration of ,gapf =

1.69%c, olf = 0.97%cand original configuration of ,gapf = 2.7%c, olf = 1.5%c

at . .87

6.26 Optimization results for Run 8-B with modified configuration of ,gapf =

1.74%c, olf = 0.4%c and original configuration of ,gapf = 2.7%c, olf = 1.5%c

at .89

6.27 Optimization result for Run 9-A with modified configuration of ,gapf =

2.01%c, olf = 0.56%c,and and original configuration of ,gapf = 1.5%c,

olf = 0.4%c. .92

6.28 Lift coefficient versus angle of attack for optimization Run 1-26B; ,gapf =

2.1%c, and olf = 0.4%c. .93

6.29 Optimization results for Run 1-26B with modified configuration of ,gapf =

2.1%c, olf = 0.4%c and original configuration of ,gapf = 2.%c1, olf = 0.95%c

at .96

6.30 Optimization results for Run 1-5C with modified configuration of ,gapf =

1.92%c, olf = 0.89%c,and and original configuration of ,gapf = 2.1%c,

olf = 0.95%c. .99

6.31 Optimization results for Run 9-C-opt (flap settings denoted in Table 6.9).101

6.32 Traditional optimization process [75]. .103

6.33 Comparison of CPU time required for traditional and neural network optimization

δ f 38.5°= δ f 53.0°=

δ f 38.5°=

δ f 38.5°=

α 10°=

δ f 38.5°=

δ f 38.5°=

α 10°=

δ f 38.5°=

α 10°= δ f 25.0°=

δ f 38.5°=

δ f 38.5°=

δ f 32.0°=

α 18°=

δ f 38.5°=

α 10°= δ f 32.0°=

xiii

procedures. .104

6.34 Average turn around time for an eight hour batch queue on CRAY computers for 31 days

at NASA Ames Research Center.105

6.35 Comparison o f total cost for the neural network and traditional optimization

procedure. .107

xv

Nomenclature

ROMAN

a speed of sound

A linear constraint matrix

A Jacobian matrix

AT transpose of matrixA

c chord, inches

c nonlinear constraint matrix

cp specific heat at constant pressure

cv specific heat at constant volume

Cd drag coefficient,

Cl lift coefficient,

Cm moment coefficient,

Cp pressure coefficient,

CPU central processing unit

d desired output

d distance

d search direction

Cd
D

q∞S
---------≡

Cl
L

q∞S
---------≡

Cm
M

q∞Sc
------------≡

Cp

p p∞–

q∞
----------------≡

xvi

deg. degree

D drag force, lbs.

DV design variable

e total energy per unit volume

eI internal energy per unit mass

exp experiment

E error function

E, F, G inviscid flux vectors

f(x) objective function

F(x) objective function

g(x) gradient vector,

G(x) Hessian matrix, second derivative matrix,

H(x) Hessian matrix, second derivative matrix,

HQ transformed Hessian

i discrete spacial index

I Identity matrix

J Jacobian

k coefficient of thermal conductivity

K number of input pairs

l lower bound vector

l layer

lbs. pounds

g x() f x()∇=

G x() ∇2
f x()=

H x() ∇2
f x()=

xvii

L total number of layers

L lift force, lbs.

L reference length, inches

L/D lift-to-drag ratio

mod modified

M number of outputs

M pitching moment, lbs./inches

n pseudo-time level

nn neural network

NP nonlinear programming

ol overlap

orig original

p pressure, lbs./inches2

p search direction

PDE partial differential equation

PDR pressure difference rule

PE processing element

Pr Prandtl number,

q(x) quadratic function

freestream dynamic pressure,

Q vector of conserved mass, momentum, and energy

QP quadratic programming

Pr
µcp

k
---------≡

q∞ q∞
1
2
---ρ∞V∞

2≡

xviii

rms root-mean-square

R residual vector

Re Reynolds number based on freestream conditions and reference length,

s change inx,

S reference area, inches2

S magnitude of vorticity, radians/seconds

t time, seconds

u upper bound vector

u, v, w velocity components in the x, y, z directions, feet/second

U, V, W contravariant velocity components, feet/second

V freestream velocity, feet/second

x vector of design variables in an optimization problem

x* first-order Kuhn-Tucker point

new iterate,

x(k) k=1, 2, ... iterates in an iterative method

x, y, z Cartesian coordinates

xi inputs

y actual output

wi connection weights of processing element

Re
ρ∞V∞L

µ∞
------------------=

s x x–=

x x x αp+=

xix

GREEK

α angle of attack, degrees

α step length

β artificial compressibility factor

γ ratio of specific heats,

δ central-difference operator

δ deflection angle, degrees

d, d(k) correction tox(k)

pressure difference,

threshold of the ith processing element in thelth layer

λ coefficient of bulk viscosity

l Lagrange multiplier vector for general constraints

µ coefficient of viscosity

µτ turbulent eddy viscosity

ν scalar

weighting parameter

j Lagrange multiplier vector for the bounds

ξ, η, ζ transformed coordinates

ρ density, slugs/feet3

artificial density

σ nonnegative step length

τ computational time

γ
cp

cv
-----≡

∆Cpdiff
∆Cpdiff

Cppeak
Cpte

–=

Θi
l

ν

ρ̃

xx

τ shear stress

non-linear eddy viscosity

ω wall vorticity, radians/second

Ω(k) neighborhood ofx

Subscripts

f flap

max maximum

nn neural network prediction

ref reference

s slat

t transition point

te trailing-edge

v viscous

freestream values

Superscripts

k iteration level

n time level

degrees

χ

∞

°

TWO-DIMENSIONAL HIGH-LIFT AERODYNAMIC
OPTIMIZATION USING NEURAL NETWORKS

Roxana M. Greenman
Ames Research Center

ABSTRACT

Artificial neural networks were successfully used to minimize the amount of data required to
completely define the aerodynamics of a three-element airfoil. The ability of the neural nets to
accurately predict the aerodynamic coefficients (lift, drag, and moment coefficients), for any
high-lift flap deflection, gap, and overlap, was demonstrated for both computational and exper-
imental training data sets. Multiple input, single output networks were trained using the NASA
Ames variation of the Levenberg-Marquardt algorithm for each of the aerodynamic coeffi-
cients. The computational data set was generated using a two-dimensional incompressible
Navier-Stokes algorithm with the Spalart-Allmaras turbulence model. In high-lift aerodynam-
ics, both experimentally and computationally, it is difficult to predict the maximum lift, and at
which angle of attack it occurs. In order to accurately predict the maximum lift in the computa-
tional data set, a maximum lift criteria was needed. The “pressure difference rule,” which states
that there exists a certain pressure difference between the peak suction pressure and the pres-
sure at the trailing edge of the element at the maximum lift condition, was applied to all three
elements. In this study it was found that only the pressure difference on the slat element was
needed to predict maximum lift. The neural nets were trained with only three different values of
each of the parameters stated at various angles of attack. The entire computational data set was
thus sparse and yet by using only 55 - 70% of the computed data, the trained neural networks
predicted the aerodynamic coefficients within an acceptable accuracy defined to be the experi-
mental error.

A high-lift optimization study was conducted by using neural nets that are trained with
computational data. Artificial neural networks have been successfully integrated with a gradient
based optimizer to minimize the amount of data required to completely define the design space
of a three-element airfoil. This design process successfully optimized flap deflection, gap, over-
lap, and angle of attack to maximize lift. Once the neural nets were trained and integrated with
the optimizer, minimal additional computer resources are required to perform optimization runs
with different initial conditions and parameters. Neural networks “within the process” reduced
the amount of computational time and resources needed in high-lift rigging optimization.

3

Chapter 1

Introduction

The design of an aircraft’s high-lift system is a crucial part of the design phase of commercial
and military airplanes since this system controls the takeoff and landing performance. The
importance of a well designed high-lift system is seen by increased payloads which also
increase the operational flexibility by extending ranges and by decreasing take-off and landing
distances. Traditionally, high-lift designs have been accomplished by extensive wind tunnel and
flight test programs which are expensive and difficult due to the extremely complex flow inter-
actions. Recently, computational fluid dynamics (CFD) has been incorporated in high-lift
design [1]. For high-lift applications, CFD can also be expensive because the entire design
space is large, grids must be generated around geometrically-complex high-lift devices, and
complex flow phenomena must be resolved. The complexity of the high-lift system of a typical
civil transport airplane is shown in Figure 1.1. In order to achieve optimum rapid designs, new
tools for speedy and efficient analysis of high-lift configurations are required. For these tools to
be effective, they need to be functional in all areas of design including wind tunnel, CFD, and
flight.

Figure 1.1 Typical civil transport with complex high-lift system.

4

1.1 Background

Artificial neural networks are a collection (or network) of simple computational devices which
are modeled after the architecture of biological nervous systems. The ability of neural networks
to accurately learn and predict nonlinear multiple input and output relationships makes them a
promising technique in modeling nonlinear aerodynamic data. Computational fluid dynamics in
conjunction with neural networks and optimization may help reduce the time and resources
needed to accurately define the optimal aerodynamics of an aircraft including high-lift. Essen-
tially, the neural networks will reduce the amount of data required to define the aerodynamic
characteristics of an aircraft while the optimizer will allow the design space to be easily
searched for extremas. Figure 1.2 shows a visual depiction of the agile artificial intelligence
(AI) enhanced design space capture and smart surfing process that is developed. The design
space data source is represented by black dots. In this study, computational fluid dynamics will
be used to generate the data. The entire design space analyzed is shown in the figure with a car-
pet map. The neural network will be able to capture the design space with the small amount of
data that is generated. Next, the optimizer will be able to locate extremas in the design space by
using the captured design space to calculate the path that must be followed to reach a maxima.
The agile artificial intelligence (AI) design space capture and surfing process is shown in Figure
1.2.

Recently, neural networks have been applied to a wide range of problems in the aerospace
industry. For example, neural networks have been used in aerodynamic performance optimiza-
tion of rotor blade design [2]. The study demonstrated that for several rotor blade designs, neu-
ral networks were advantageous in reducing the time required for the optimization. Faller and
Schreck [3] successfully used neural networks to predict real-time three-dimensional unsteady
separated flowfields and aerodynamic coefficients of a pitching wing. It has also been demon-
strated that neural networks are capable of predicting measured data with sufficient accuracy to
enable identification of instrumentation system degradation [4]. Steck and Rokhsaz [5] demon-

OPTIMIZER

Objective
Function

Design
Variable 1

Design
Variable 2

NEURAL
NETWORK

Design
Space
Data

Source

Figure 1.2 Agile AI-enhanced design space capture and smart surfing.

DESIGN
SPACE

5

strated that neural networks can be successfully trained to predict aerodynamic forces with suf-
ficient accuracy for design and modeling. Rai and Madavan [6] demonstrated the feasibility of
applying neural networks to aerodynamic design of turbomachinery airfoils.

Neural networks have been used at NASA Ames Research Center to minimize the amount
of data required to define the aerodynamic performance characteristics of a wind tunnel model
[7-8]. It was shown that when only 50% of the data acquired from the wind tunnel test was used
to train neural nets, the results had a predictive accuracy equal to or better than the experimental
data. The success of the NASA Ames neural network application for wind tunnel data
prompted this current study to use neural networks to minimize the amount of computational
data required to accurately train neural networks to predict high-lift aerodynamics of a multi-
element airfoil.

1.2 Agile AI-Enhanced Design Process

This paper describes a process which allows CFD to impact high-lift design. This process
has three phases: 1) generation of the training database using CFD; 2) training of the neural net-
works; and 3) integration of the trained neural networks with an optimizer to capture and surf
(search) the high-lift design space (refer to Figure 1.3). In this study, an incompressible two-
dimensional Navier-Stokes solver is used to compute the flowfield about the three-element air-
foil shown in Figure 1.4. The selected airfoil is a cross-section of the Flap-Edge model [9] that
was tested in the 7- by 10-Foot Wind Tunnel No. 1 at the NASA Ames Research Center. Exten-
sive wind-tunnel investigations [9] have been carried out for the Flap-Edge geometry shown in
Figure 1.4. The model is a three-element unswept wing consisting of a 12%c LB-546 slat,
NACA 632-215 Mod B main element and a 30%c Fowler flap where c is chord and is equal toc
= 30.0 inches for the undeflected (clean, all high-lift components stowed) airfoil section.

GRID
GENERATION

COMPUTE
INS2D
FLOW

SOLUTIONS

DESIGN
DATA

SPACE
SOURCE

TRAINED
NEURAL

NETWORKS
OPTIMIZATION

OPTIMAL
CONFIGURATION

INPUTS

O
U

T
P

U
T

S

Figure 1.3 Illustration of AI-enhanced design process.

6

Within the CFD database for this flap optimization problem, there are two different slat
deflection settings, six and twenty-six degrees, and for each, 27 different flap riggings (refer to
Figure 1.4b) are computed for ten different angles of attack. Each slat has a gap ofgaps =
2.0%cand an overlap ofols = -0.05%c. The slat gap is measured from the slat trailing edge to
the point of the main element whose tangent to the surface is perpendicular to the line of mea-
surement. All gap and overlap values in this paper are expressed in terms of percent chord,%c.
The neural networks are trained by using the flap riggings and angles of attack as the inputs and
the aerodynamic forces as the outputs. The neural networks are defined to be successfully
trained to predict the aerodynamic coefficients when given a set of inputs that are not in the
training set, the outputs are predicted within the experimental error. The experimental error of
the total lift coefficient (Cl) is for and for . Finally,
the trained neural networks are integrated with the optimizer to allow the design space to be
easily searched for points of interest. It will be shown that this agile, artificial intelligence
enhanced design process minimizes the cost and time required to accurately optimize the high-
lift flap rigging.

Figure 1.4 Flap-Edge Geometry and definition of flap and slat high-lift rigging.

a) Three-Element Airfoil

b) Definition of flap rigging parameters

gap

wing chord line
drawn with
flap undeflected

overlap

flap deflection

overlap

gap

slat deflection

tangent
to
surface

c) Definition of slat rigging parameters

0.02± Cl 0.95Clmax
≤ 0.06± Cl 0.95Clmax

≥

7

This work is presented in the following chapters. The governing equations are presented in
Chapter 2. A description of the numerical approach is presented in Chapter 3, including grid
generation and boundary conditions. Next, the neural networks are discussed in Chapter 4. The
optimizer and the optimization process are described in Chapter 5. Chapter 6 analyzes the
results of the neural networks’ ability to learn and predict the aerodynamic performance char-
acteristics and the results of the AI optimization process. Finally, Chapter 7 summarizes the
results and discussion and also presents recommendations.

9

Chapter 2

Governing Equations

The governing equations of fluid dynamics are derived from three conservation laws of mass,
momentum, and energy. The Navier-Stokes equations were derived independently by Navier
and Stokes in the mid-nineteenth century. Although they were originally derived to include
only the conservation of momentum, it is now customary to include the conservation of mass
and energy in the complete set of the Navier-Stokes equations. The present discussion begins
with a description of the Navier-Stokes equations. Next, a coordinate transformation of the gov-
erning equations is discussed. The Reynolds-Averaged Navier-Stokes Equations, a special form
of the governing equations, are then presented. Lastly, a one-equation turbulence model that is
used to model the turbulent eddy viscosity is presented.

2.1 The Navier-Stokes Equations

The universal laws of the conservation of mass, momentum, and energy are the basis of the fun-
damental equations of fluid dynamics. These conservation laws are used to compose the three-
dimensional Navier-Stokes equations which are the governing equations for a Newtonian fluid.
A Newtonian fluid is a fluid where the stress is linearly dependent on the rate of strain. The
majority of aerodynamic applications deal with air, other gases, or water which are Newtonian
fluids. The Navier-Stokes equations are a set of five coupled, nonlinear partial differential equa-
tions which are the foundation of the science of viscous flow theory [10]. Upon assuming that
body forces and the addition of external heat are negligible the Navier-Stokes equations can be
written in nondimensional conservation law form as

(2.1)

whereQ is the vector of conserved mass, momentum, and energy given by

∂Q
∂t
------- ∂E

∂x
------- ∂F

∂y
------ ∂G

∂z
-------+ + +

1
Re

∂Ev

∂x

∂Fv

∂y

∂Gv

∂z
----------+ +

 =

10

(2.2)

The inviscid flux vectors,E, F, andG, are defined as

(2.3)

whereρ is density,u, v, andw are thex, y, andz velocity components, respectively,p is pres-
sure, ande is the total energy per unit volume. In equation (2.1), the Reynolds number,Re, is
defined as

(2.4)

Here,a is the speed of sound,L is a reference length,µ is the coefficient of viscosity, and the
subscript denotes freestream values. The Reynolds number indicates the relative importance
of inertial and viscous effects in fluid motion. The viscous flux vectors,Ev, Fv, andGv, are
defined as

(2.5)

where

Q

ρ
ρu

ρv

ρw

e

=

E

ρu

ρu2 p+

ρuv

ρuw

e p+()u

= F

ρv

ρuv

ρv2 p+

ρvw

e p+()v

= G

ρw

ρuw

ρvw

ρw2 p+

e p+()w

=

Re
ρ∞a∞L

µ∞
-----------------=

∞

Ev

0

τxx

τyx

τzx

βx

= Fv

0

τxy

τyy

τzy

βy

= Gv

0

τxz

τyz

τzz

βz

=

11

(2.6)

The Prandtl number,Pr, is defined as

(2.7)

wherecp is the specific heat at constant pressure, andk is the coefficient of thermal conductiv-
ity. The Prandtl number is indicative of the relative ability of the fluid to diffuse momentum and
internal energy by molecular mechanisms.

The internal energy,eI, and the pressure,p, are given in terms of the other flow variables as

(2.8)

In order to nondimensionalize the variables appearing in equations (2.1) through (2.8), the fol-
lowing procedure was followed: the spatial coordinates, (x, y, z), are divided by a reference
length,Lref ; the velocity is divided by the freestream speed of sound; the density and viscosity
are divided by their freestream values; time is divided by ; and the pressure is normal-
ized by . Stokes hypothesis is applied, which states that for a gas the coefficient of bulk
viscosity,λ, can be related to the coefficient of dynamic viscosity,µ, by the following relation-
ship

(2.9)

For turbulent flows, equation (2.1) can be considered to be the Reynolds-averaged Navier-
Stokes equations, where the high frequency fluctuations of the turbulent flowfield are time aver-
aged. For turbulent flows, a turbulence model must be used to specify the coefficients of viscos-
ity and heat conductivity which appear in the viscous terms in equation (2.6). This will be
further discussed in Section 2.3. The derivation of the Navier-Stokes equations presented here

τxx λ ux vy wz+ +() 2µux+=

τyy λ ux vy wz+ +() 2µvy+=

τzz λ ux vy wz+ +() 2µwz+=

τxy τyx µ uy vx+()= =

τxz τzx µ uz wx+()= =

τyz τzy µ vz wy+()= =

βx γkPr 1– ∂xeI uτxx vτxy wτxz+ + +=

βy γkPr 1– ∂yeI uτyx vτyy wτyz+ + +=

βz γkPr 1– ∂zeI uτzx vτzy wτzz+ + +=

Pr
µcp

k∞
---------=

eI
e
p
--- 0.5 u2 v2 w2+ +()–=

p γ 1–() e 0.5ρ u2 v2 w2+ +()–[]=

Lref a∞⁄
ρ∞a∞

2

λ 2
3
---µ–=

12

is for the three-dimensional formulation only, as the two-dimensional system is an obvious sub-
set of the three-dimensional system.

2.2 Coordinate Transformation

In order to apply the numerical algorithm and boundary conditions easily, the governing equa-
tions which are developed in the physical domain or Cartesian coordinates, (x, y, z), must be
transformed to the computational domain or generalized coordinates, (ξ, η, ζ), as seen in Figure
2.1 [10]. In this study,ξ, η, andζ are the coordinates in the axial, circumferential, and radial

directions, respectively. The general transformation is of the form

(2.10)

and the inverse of the transformation is

ζ

η

ξ Body
Surface

ζ

η

ξ
Body
Surface

PHYSICAL DOMAIN COMPUTATIONAL DOMAIN

ξ ξ x y z t, , ,()=

η η x y z t, , ,()=

ζ ζ x y z t, , ,()=

τ t=

z

y

x

Figure 2.1 Generalized transformation from the physical to the computational domain.

ξ ξ x y z t, , ,()=

η η x y z t, , ,()=

ζ ζ x y z t, , ,()=

τ t=

13

(2.11)

The transformation brings the body surface onto one computational plane (ζ = 1). The compu-
tational domain is chosen to have equal spacing to simplify the differ-
encing. By using the chain rule of partial differentiation, the partial derivatives in the physical
domain become

(2.12)

whereτt = 1 and the metricsτx, τy, andτz are equal to zero. The metrics (ξx, ηx, ζx, ξy, ηy, ζy, ξz,
ηz, ζz, ξt, ηt, ζt) that appear in equations (2.12) are obtained in the following manner. The dif-
ferential expressions are

(2.13)

which can be written in matrix form as

(2.14)

Similarly,

x x ξ η ζ τ, , ,()=

y y ξ η ζ τ, , ,()=

z z ξ η ζ τ, , ,()=

t τ=

∆ξ ∆η ∆ζ 1= = =()

∂
∂x
------ ξx

∂
∂ξ
------ ηx

∂
∂η
------ ζx

∂
∂ζ
------+ +=

∂
∂y
----- ξy

∂
∂ξ
------ ηy

∂
∂η
------ ζy

∂
∂ζ
------+ +=

∂
∂z
----- ξz

∂
∂ξ
------ ηz

∂
∂η
------ ζz

∂
∂ζ
------+ +=

∂
∂t
----- ξt

∂
∂ξ
------ ηt

∂
∂η
------ ζt

∂
∂ζ
------ ∂

∂τ
-----+ + +=

dξ ξxdx ξydy ξzdz ξtdt+ + +=

dη ηxdx ηydy ηzdz ηtdt+ + +=

dζ ζxdx ζydy ζzdz ζtdt+ + +=

dτ dt=

dξ
dη
dζ
dτ

ξx ξy ξz ξt

ηx ηy ηz ηt

ζx ζy ζz ζt

0 0 0 1

dx

dy

dz

dt

=

14

(2.15)

Therefore

(2.16)

Thus, the transformation metrics are

(2.17)

whereJ is the Jacobian of the transformation, defined as

(2.18)

This may be simplified to

dx

dy

dz

dt

xξ xη xζ xτ

yξ yη yζ yτ

zξ zη zζ zτ

0 0 0 1

dξ
dη
dζ
dτ

=

ξx ξy ξz ξt

ηx ηy ηz ηt

ζx ζy ζz ζt

0 0 0 1

xξ xη xζ xτ

yξ yη yζ yτ

zξ zη zζ zτ

0 0 0 1

1–

=

ξx J yηzζ yζzη–()=

ξy J– xηzζ xζzη–()=

ξz J xηyζ xζyη–()=

ηx J yξzζ yζzξ–()–=

ηy J xξzζ xζzξ–()=

ηz J xξyζ xζyξ–()–=

ζx J yξzη yηzξ–()=

ζy J– xξzη xηzξ–()=

ζz J xξyη xηyξ–()=

ξt xτξx yτξy– zτξz––=

ηt xτηx yτηy– zτηz––=

ζt xτζx yτζy– zτζz––=

J
∂ ξ η ζ τ, , ,()
∂ x y z t, , ,()

ξx ξy ξz ξt

ηx ηy ηz ηt

ζx ζy ζz ζt

0 0 0 1

= =

15

(2.19)

which can be evaluated in the following manner

(2.20)

The metrics can be determined by using a finite difference scheme in the computational
domain.

Applying this generalized transformation to the Navier-Stokes equations (2.1), the follow-
ing transformed equations are obtained

(2.21)

where the inviscid flux terms are

(2.22)

while the viscous flux terms are given by

J
∂ ξ η ζ, ,()
∂ x y z, ,()

ξx ξy ξz

ηx ηy ηz

ζx ζy ζz

= =

J
1

J 1–
------- 1

∂ x y z, ,()
∂ ξ η ζ, ,()

xξ xη xζ

yξ yη yζ

zξ zη zζ

1–

= = =

xξ yηzζ yζzη–() xη yξzζ yζzξ–()– xζ yξzη yηzξ–()+[] 1–
=

∂Q̂
∂τ
------- ∂Ê

∂ξ
------- ∂F̂

∂η
------ ∂Ĝ

∂ζ
-------+ + +

1
Re

∂Êv

∂ξ

∂F̂v

∂η

∂Ĝv

∂ζ
----------+ +

 =

Q̂ J
1–

ρ
ρu

ρv

ρw

e

= Ê J 1–

ρU

ρuU ξxp+

ρvU ξyp+

ρwU ξzp+

e p+()U ξt p–

=

F̂ J 1–

ρV

ρuV ηxp+

ρvV ηyp+

ρwV ηzp+

e p+()V ηt p–

= Ĝ J 1–

ρW

ρuW ζxp+

ρvW ζyp+

ρwW ζzp+

e p+()W ζt p–

=

16

(2.23)

In equation (2.22)U, V, andW are the contravariant velocity components defined as

(2.24)

2.3 Turbulence Modeling

In order to predict turbulent flows solving the Navier-Stokes equations, closure assumptions
must be made about the apparent turbulent stress and heat-flux quantities. The Boussinesq
approximation, that the apparent turbulent shearing stresses might be related to the rate of mean
strain through an apparent scalar turbulent or eddy viscosity, is used.

The prediction of high-lift aerodynamics is currently a difficult challenge for CFD and
especially the turbulence modeling. Even in two-dimensions, the flow about a multi-element
airfoil is naturally complex. Even though high-lift devices work by manipulating the inviscid
flow, viscous effects are important in predicting the flow field [11].

2.3.1 Spalart-Allmaras Turbulence Model

The Spalart-Allmaras turbulence model [12] has been found to be robust enough to run on these
complex problems and within numerical assumptions, it currently appears to be the best choice

Êv J 1–

0

ξxτxx ξyτxy ξzτxz+ +

ξxτyx ξyτyy ξzτyz+ +

ξxτzx ξyτzy ξzτzz+ +

ξxβx ξyβy ξzβz+ +

=

F̂v J 1–

0

ηxτxx ηyτxy ηzτxz+ +

ηxτyx ηyτyy ηzτyz+ +

ηxτzx ηyτzy ηzτzz+ +

ηxβx ηyβy ηzβz+ +

=

Ĝv J 1–

0

ζxτxx ζyτxy ζzτxz+ +

ζxτyx ζyτyy ζzτyz+ +

ζxτzx ζyτzy ζzτzz+ +

ζxβx ζyβy ζzβz+ +

=

U ξt ξxu ξyv ξzw+ + +=

V ηt ηxu ηyv ηzw+ + +=

W ζt ζxu ζyv ζzw+ + +=

17

for this high-lift application [11], [13-16]. The Spalart-Allmaras model is a one-equation
model. The Spalart-Allmaras model has a favorable feature that it is “local”. The solution at
one point does not depend on the solutions of other points [17]. The Spalart-Allmaras turbu-
lence model has the advantage that it does not need as fine grid spacing near the surface of the
body as the two-equation models do [13].

The Spalart-Allmaras turbulence model solves one transport equation for a non-linear eddy
viscosity variable . In the Spalart-Allmaras turbulence model, the eddy viscosity is defined by

(2.25)

where

(2.26)

The transport equation for is given by

(2.27)

Here, is the gradient operator. and are defined by

(2.28)

whereS is the magnitude of the vorticity andd is the distance to the closest wall. The function
fw is given by

(2.29)

where

(2.30)

and

χ

vt vχ f v1=

f v1
χ3

χ3 cv1
3+

-------------------=

χ

Dχ
Dt
-------- cb1 1 f t2–[]S̃χ v

σ
---+ ∇ 1 χ+() χ∇() cb2 χ∇()2+⋅[]=

v cw1 f w

cb1

κ2
------- f t2–

χ
d

 2
–

f t1

v
------- U2∇+

∇ S̃ f v2

S̃ S
vχ

κ2d2
----------- f v2+≡

f v2 1 χ
1 χ f v1+
---------------------–=

f w g
1 cw3

3+

g6 cw3
6+

1 6⁄

=

g r cw2 r 6 r–()+=

18

(2.31)

The Spalart-Allmaras turbulence model has a sophisticated transition model which provides
a smooth laminar to turbulent transition at points specified by the user. In equation (2.27), the
transition functions,ft1 and ft2 are defined as

(2.32)

(2.33)

(2.34)

Here, the termdt is the distance from the field point to the trip point on a wall (which is defined
by the user; the termωt is the wall vorticity at the transition point; is the difference
between the velocity at the field point and at the transition point; and is the grid spacing
along the wall at the transition location. In this study, the flow is assumed to be fully turbulent
and no transition point is specified. Thus, the transition terms defined in equations (2.32) -
(2.34) are set to zero.

The different constants and functions that appear in equations (2.25) through (2.34) in the
formulation of the Spalart-Allmaras turbulence model are chosen to produce a model which
best simulates the turbulent shear flows. In order to calibrate the turbulence model, empirically
derived relationships and numerical simulations of many different shear flows are used. The
values of these functions and constants are given below.

(2.35)

The boundary conditions and initial values for must be set before equation (2.27) can be
solved numerically. At a no-slip wall boundary, is set to zero. At outflow and wall boundaries
the normal derivatives of is set to zero. The ideal value of in the freestream is zero. Typi-
cally the initial value of at all field points is set to the freestream value. An implicit solution
procedure is used to advance equation (2.27) to the next iteration level. At each iteration, the
updates of the velocity field from the Navier-Stokes solution algorithm and the turbulent vis-
cosity from the turbulence model are computed in an uncoupled manner.

r
vχ

S̃κ2d2
---------------≡

f t1 ct1gt ct2

ωt
2

U2∆
---------- d2 gt

2dt
2+[]–

 exp=

f t2 ct3 ct4χ2–()exp=

gt min 0.1 U ωt xt∆⁄∆,()≡

U∆
xt∆

σ 2 3⁄= κ 0.41=

cb1 0.1355= cb2 0.622=

ct1 1.0= ct2 2.0=

ct3 1.2= ct4 0.5=

cw1 cb1 κ2 1 cb2+() σ⁄+⁄=

cw2 0.3= cw3 2.0=

cv1 7.1=

χ
χ

χ χ
χ

19

Chapter 3

Numerical Methods

In this study the algorithm employed to solve the two-dimensional incompressible Navier-
Stokes equations is the INS2D-UP code reported by Rogers and Kwak [18], [19]. The INS2D-
UP code is robust in obtaining steady-state and time-dependent solutions to the Reynolds-aver-
aged incompressible Navier-Stokes equations. All the computations presented in this study are
performed using the steady-state flow option. INS2D-UP uses the approach of artificial com-
pressibility to formulate the equations into a hyperbolic set of partial differential equations. The
convective terms are differenced using an upwind biased flux-difference splitting. INS2D-UP
uses an implicit line-relaxation scheme to solve the system of equations.

A brief description of the method of artificial compressibility will be presented in this sec-
tion. Next, a description of the flux-difference splitting scheme used to compute the convective
terms and the viscous flux terms will be discussed. A derivation of the linear system of equa-
tions that result from the implicit finite difference algorithm will be performed. Then the com-
putational grid generation method will be discussed. Lastly, the boundary conditions that are
applied in this study are presented.

3.1 Artificial Compressibility

The two-dimensional incompressible Navier-Stokes equations are a set of mixed elliptic-para-
bolic partial differential equations (PDEs). In this type of PDE, a disturbance propagates to all
points in the flowfield in a single time step. An iterative solution scheme to solve the equations
at each time step must be used due to the elliptic nature of the equations. INS2D takes the
approach of recasting the incompressible Navier-Stokes equations to a hyperbolic set of PDEs
by using the method of artificial compressibility which was first introduced by Chorin [20].

In the method of artificial compressibility, an artificial compressibility term is added to the
continuity equation. This term vanishes when the steady-state solution is reached, and thus it
continues to satisfy the requirement of the incompressible continuity equation of a divergence-
free velocity field. The modified continuity equation is

(3.1)∂ρ̃
∂τ
------ ∂u

∂x
------ ∂v

∂y
-----+ + 0=

20

Here, is the artificial density andτ is a pseudo-time for incompressible flow. The modified
continuity equation and the momentum equation is marched in pseudo-time until a steady-state
solution is reached.

The main advantage of adding the artificial compressibility term to the continuity equation
is that now the incompressible Navier-Stokes equations are transposed from an elliptic to a
hyperbolic set of partial differential equations. The equations can be marched in pseudo-time
versus solving them at each iteration. The hyperbolic equations also allow the convective fluxes
to be upwind differenced rather than central differenced. For central difference schemes, artifi-
cial dissipation needs to be explicitly added to the central differenced convective fluxes to damp
out numerical oscillations resulting from the non-linearity of the convective fluxes. The final
solution is affected by the amount of artificial dissipation that is added and thus the correct
amount needs to be prescribed and adjusted for each simulation. An upwind scheme is a natu-
rally dissipative scheme which damps out the numerical oscillations caused by the nonlinear
convective fluxes. Thus by using upwind differencing on the convective terms, many of the
problems associated with central differenced convective terms are avoided. Another advantage
of upwind differenced convective fluxes is that the scheme is nearly diagonally dominant since
it contributes to items on the diagonal of the Jacobian of the residual. The convergence rate of
the algorithm used to solve the system of equations is thus improved.

An artificial equation of state is used to relate the artificial density and the pressure as
shown below

(3.2)

whereβ is the artificial compressibility factor and is analogous to the square of the speed of
sound in the physical domain. The artificial compressibility factor determines the rate at which
waves propagate. Substituting from Equation (3.2) into Equation (3.1) creates the following
modified continuity equation

(3.3)

Combining Equation (3.3) with the momentum equations leads to the following set of equa-
tions.

(3.4)

where the inviscid flux terms are

ρ̃

p βρ̃=

ρ̃

∂p
∂τ
------ β ∂u

∂x
------ ∂v

∂y
-----+

 + 0=

∂Q̂
∂τ

∂ Ê Êv–()
∂ξ

∂ F̂ F̂v–()

∂η
-----------------------+ + 0=

21

(3.5)

and the viscous flux terms are given by

(3.6)

the Jacobian of the transformation,J, in two-dimensions is defined to be

(3.7)

Note that for incompressible flow the conservation of energy equation is dropped from the
set and only the equations for mass and momentum are considered because the energy equation
does not influence the results for velocity and pressure which are the variables that are of inter-
est when solving an incompressible, viscous fluid.

3.2 Finite Differencing

In the finite difference approach, the continuous problem is discretized so that the dependent
variables are considered to exist only at discrete points. Derivatives are approximated by differ-
ences resulting in an algebraic representation of the partial differential equations. Thus, the
problem involving calculus has now been transformed into an algebraic problem. Most finite-
difference approximations of derivatives are based on Taylor’s series expansion. After the par-
tial derivatives in Equation (3.4) are approximated by finite differences, the governing equa-
tions can then be solved numerically. The following sections will discuss the finite difference

Q̂ J 1–

p

u

v

=

Ê J 1–

βU

ξxp uU+

ξyp vU+

=

F̂ J 1–

βV

ηxp uV+

ηyp vV+

=

Êv J 1–

0

ξxτxx ξyτxy+

ξxτyx ξyτyy+

=

F̂v J 1–

0

ηxτxx ηyτxy+

ηxτyx ηyτyy+

=

J
1

xξ xη

yξ yη

----------------------------- 1
xξyη xηyξ–()

---------------------------------= =

22

approach that is used in the INS2D-UP code. The approach outlined here follows the develop-
ment by Rogers [21].

3.2.1 Metric Terms

Finite differencing is used to approximate the partial derivatives in the coordinate transforma-
tion metrics that are shown in Equation (2.17). In two-dimensions, the metrics terms are simpli-
fied to be

(3.8)

In order to ensure freestream preservation on a stationary grid, the metrics must be evaluated
carefully.

The metric terms can be evaluated as defined above if analytic expressions for the inverse of
the transformation (and) exist. The metric terms are not evaluated
directly using finite difference approximations. Instead, the individual values, , and

are evaluated using finite difference approximations. The results are then averaged and sub-
stituted into Equations (3.7) and (3.8) to obtain the metric terms. The partial derivatives are rep-
resented with a central difference approximation with second-order accuracy

(3.9)

The metric terms are evaluated at each grid point and are now averaged with the following pro-
cedure

(3.10)

The other partial derivatives are computed with similar expressions.

3.2.2 Convective Flux Differencing

INS2D-UP uses upwind differencing to follow the propagation of the artificial waves intro-
duced by the artificial compressibility. The upwind scheme provides implicit dissipation which
suppresses any oscillations caused by the nonlinear convective terms. Furthermore, the upwind
differenced flux vector will contribute terms to the diagonal of the Jacobian of the residual
which will make the implicit scheme nearly diagonally dominant and make the numerical code
more robust.

Upwind schemes are one-sided difference operators and are stable only for equations with
single-signed eigenvalues. Whereas, central difference operators lead to schemes that are
simultaneously positive and negative characteristic speeds or eigenvalues. The governing equa-

ξx Jyη= ηx J– yξ=

ξy J– xη= ηy Jxξ=

x x ξ η,()= y y ξ η,()=
xξ xη yξ, ,

yη

xξ()i j,
∂x
∂ξ

i j,

1
2∆ξ
---------- xi 1 j,+ xi 1 j,––()= =

ηy()i j,
J
2
--- xξ()i 1 j,+ xξ()i 1 j,–+[]=

23

tions have eigenvalues of mixed signs in the flow regimes studied and thus the flux vectors must
be split prior to using the one-sided spatial difference operators [22]. Although it is more costly
to use upwind flux differencing than central differencing, there is a significant decrease in the
total computer time requirements because of the speed-up in convergence.

The scheme that is used is developed by Roe [23] which is an approximate Riemann solver
for the compressible gas dynamics equations. The upwind scheme is derived from one-dimen-
sional theory and is then applied separately to each of the coordinate directions. Flux-difference
splitting is used to structure the differencing stencil based on the sign of the eigenvalues of the
convective flux Jacobian.

The derivative of the convective flux in the ξ direction is approximated by

(3.11)

wherei is the discrete spatial index for theξ direction and is a numerical flux given by

(3.12)

where the dissipation term is denoted by . If then the differencing repre-
sents a second-order central-difference scheme. A first-order upwind scheme results when

(3.13)

where is the flux difference across positive and negative traveling waves. The flux differ-
ence is computed by the following equation

(3.14)

Here, the operator is

(3.15)

The plus Jacobian matrix has only positive eigenvalues whereas, the negative Jacobian matrix
has only negative eigenvalues. They are computed from

(3.16)

where and are the matrices of either positive or negative eigenvalues and eigenvec-
tors, respectively. Now that flux vector splitting has been performed, the appropriate one-sided
scheme can be used.

∂Ê
∂ξ

Ẽi 1 2⁄+ Ẽi 1 2⁄––
∆ξ

--≈

Ẽi 1 2⁄+

Ẽi 1 2⁄+
1
2
--- Ê Qi 1+() Ê Qi() φi 1 2⁄+–+[]=

φi 1 2⁄+ φi 1 2⁄+ 0=

φi 1 2⁄+ ∆Ei 1 2⁄+
1 ∆Ei 1 2⁄+

2
–=

∆E
6

∆Ei 1 2⁄+
6 A6 Q()∆Qi 1 2⁄+=

∆

∆Qi 1 2⁄+ Qi 1+ Qi–=

A6 XL
6

X 1–
=

A
6

L
6

24

3.2.3 Viscous Flux Differencing

The viscous flux terms in Equation (3.6) contain partial derivatives that need to be approxi-
mated with finite differencing. A second-order accurate central difference scheme is used in the
INS2D-UP code to approximate the derivatives in the viscous flux terms as shown below

(3.17)

The turbulent viscosity appearing in the viscous flux vectors must be computed at each grid
point and at each step in pseudo-time using the turbulence model.

3.2.4 Pseudo-time derivatives

A marching scheme in pseudo-time is used until a steady-state solution is obtained. Since accu-
racy is not required in pseudo-time, a first-order implicit Euler differencing scheme can be used
to represent the partial derivatives of with respect to the pseudo-timeτ. Using an implicit
differencing scheme eliminates the restriction on step size in pseudo-time that the explicit
scheme contains to maintain stability. To begin, Equation (3.4) is rewritten as

(3.18)

whereR is the residual vector and is equal to

(3.19)

Next the implicit Euler scheme is applied to Equation (3.18)

(3.20)

wheren represents the pseudo-time level and

(3.21)

To linearize the right-hand-side of the above equation, a Taylor’s series expansion is written
and truncated after the first two terms. The chain rule for partial differentiation is also used
which yields

δÊv

∂ξ

i j,

Êv()i 1 j,+ Êv()i 1– j,–
2∆ξ

---=

δF̂v

∂η

i j,

F̂v()i j 1+, F̂v()i j 1–,–
2∆η

--=

Q̂

∂Q̂
∂τ
------- R–=

R
∂ Ê Êv–()

∂ξ

∂ F̂ F̂v–()
∂η

∂ Ĝ Ĝv–()

∂ζ
-------------------------+ +=

Qn 1+ Qn
–

J∆τ
--------------------------- Rn 1+

–=

Q JQ̂=

25

(3.22)

(3.23)

Substituting Equation (3.23) into Equation (3.19) and rearranging yields the following linear
system of equations

(3.24)

INS2D-UP provides many different schemes that can be used to solve the linear system of
equations shown in Equation (3.24). The implicit method that is used in the present study is the
Generalized Minimal Residual (GMRES) method [24]. The convergence of this method is
dependent on the eigenvalue distribution of the matrix being solved. The system of equations
must be preconditioned to speed up convergence. The Incomplete Lower-Upper (ILU) factor-
ization scheme with zero additional fill is used. Rogers [24] found that the GMRES with the
ILU preconditioner outperformed both the point relaxation and line relaxation schemes.

3.3 Computational Grid

The finite-difference approach requires calculations to be made over a collection of discrete
grid points. The arrangement of these discrete points throughout the flow field is called the grid.
The composite grid around the three-element airfoil is generated by using OVERMAGG [25]
which is an automated script system used to perform overset multi-element airfoil grid genera-
tion.

3.3.1 Grid Generation Procedure

The automation process that OVERMAGG uses to generate the volume grids is described here.
OVERMAGG takes as input the surface definition of the individual elements of the airfoil.
Then it creates a surface grid for each individual element by generating and redistributing
points from the given surface definition. It calls the HYPGEN code [26] to generate volume
grids about each element. The finite difference volume grid is generated in the normal direction
of the surface by solving a set of hyperbolic partial differential equations. OVERMAGG also
automatically calls the PEGSUS code [27] to unite the individual volume grids into an overset
grid system which is the final output of OVERMAGG. Details of HYPGEN and PEGSUS
codes can be found in the References cited.

The PEGSUS code is used to implement the Chimera overset grid method. The Chimera
overset grid scheme unites the individual grids into a single multi-zone grid. The overset grid
method requires only that neighboring grids overlap each other. Points from the main, slat, or
flap grids which were generated independently, may fall inside the body boundary of another
element. These points must be removed from the calculation. When this happens, a hole is cut

Rn 1+ Rn ∆τ ∂R
∂τ

 n
+ Rn ∆τ ∂R

∂Q

 n ∂Q
∂τ

 += =

Rn 1+ Rn ∂R
∂Q

 n
Qn 1+ Qn

–()+=

1
J∆τ
---------I

∂R
∂Q

 n
+ Qn 1+ Qn

–() Rn
–=

26

to remove the points. This creates boundary points (or fringe points) at the edge of holes in
addition to the existing individual grid outer boundaries. The fringe points are employed in this
study for all grids. Flow variables are updated at hole and outer boundary points by tri-linear
interpolation. The PEGSUS code identifies hole boundaries and determines the interpolation
stencils. Figure 3.1 shows the grid system that is used for numerical prediction of the flow field
about the multi-element airfoil.

3.3.2 Grid Sensitivity Study

A grid resolution study is conducted to determine the grid density required to solve the
physical flow features. The grid sensitivity study is conducted for a slat setting ofδs = 6.0, gaps
= 2.0%c, ols = -0.05%cand a flap setting ofδf = 40.0, gapf = 1.45%c, olf = 1.24%c.Four dif-
ferent grids are used in the computations and the different grid densities are shown in Table
3.1:. The number of grid points were increased on the bodies, wakes, and coves for each ele-
ment. For the fine grid system, a total of 121,154 grid points are used consisting of a 242 x 81
C-grid around the slat; a 451 x 131 C-grid around the main element; and a 351 x 121 embedded
grid around the flap which is used to help resolve the merging wake in this region. The normal
wall spacing for all grids is 5 x 10-6 chords.

The computed lift coefficient versus angle of attack for each grid system is shown in Figure
3.2. This figure shows that there is not much difference between the solutions generated on the
different grid systems. However, if the lift coefficient is plotted against the drag coefficient as
shown in Figure 3.3, there are differences in the solutions. Coarse grid computations predict
higher drag coefficients than the other calculations. Medium grid computations under predict
the drag coefficients when compared to the intermediate and the fine grid solutions. The differ-

Figure 3.1 Grid around three-element airfoil (every other point shown for clarity).

27

ence in the grid point distribution between the intermediate and fine grid system is in the main
element. It appears from Figure 3.3 that adding the extra points in the main element is benefi-
cial. Similar results were obtained in a grid resolution study conducted to quantify the number
of grid points necessary to obtain accurate solutions for a multi-element configuration [13]. The
fine grid density is used in the remainder of this study.

3.4 Boundary Conditions

Implicit boundary conditions are used at all of the boundaries, thus allowing the use of large
time steps. In this numerical simulation, the boundary conditions applied to all solid surfaces

Table 3.1:Grid dimensions used for grid sensitivity study

Grid
Density

Slat Main Flap
Total
Points

x y x y x y

Coarse 121 41 401 121 141 51 60,673

Medium 161 61 501 141 311 111 113,153

Intermediate 242 81 401 121 351 121 110,594

Fine 242 81 451 131 351 121 121,154

0.0 10.0 20.0 30.0
angle of attack

2.5

3.5

4.5

5.5

Cl

coarse
medium
intermediate
fine

Figure 3.2 Comparison of lift coefficient for grid sensitivity study.

28

are no-slip boundary condition. For a viscous no-slip surface, the velocity is specified to be
zero, and the pressure at the boundary is obtained by requiring the pressure gradient normal to
the wall to be zero. The boundary conditions used for inflow and outflow regions in INS2D-UP
are based on the method of characteristics (refer to Reference 21 for a complete description).
The outflow boundary uses extrapolated velocity and constant static pressure. The inflow
boundary condition is prescribed with uniform velocity and constant total pressure. Wake-cut
boundaries are required since a C-grid topology is used. Wake points are updated by a first
order averaging of the points on either side of the wake cut. As mentioned, PEGSUS is used to
obtain boundary conditions at grid boundaries that overlap neighboring grids.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Cd

2.5

3.5

4.5

5.5

Cl

coarse
medium
intermediate
fine

Figure 3.3 Comparison of lift coefficient versus drag coefficient for grid sensitivity study.

29

Chapter 4

Neural Nets

Although there has been research in developing and applying neural networks in the last fifty
years, it is only recently that neural networks have been getting popular for engineering appli-
cations. Significant research in neural networks is being conducted in neurobiology, biology,
cognitive science, computer science, optics, physics, statistics, and engineering including aero-
space engineering.

A discussion of biological neurons is presented in the next section. Next, the artificial neu-
rons are defined and compared to the biological neurons and the artificial neural networks are
discussed. A brief history of neural nets is then outlined followed by two current applications of
neural networks. In addition, neural network operations are presented. The algorithm that is
used in this present study to train the neural nets will be derived including a development of the
nonlinear least square optimization of the problem. Lastly, the architecture of the neural net-
works used in this current study is described.

4.1 Analogy to the Human Brain

Humans and computers are good at completing different tasks. A human can recognize objects,
colors, and details, whereas the most powerful computer can not compete with the human per-
formance at this task. Likewise, there are computers that can perform calculations in one sec-
ond that would take a human 406 years to perform [28]. Computers and humans excel at
different tasks because their nervous systems are different. A computer is usually composed of
one processor that executes commands in the order written by a programmer. The nervous sys-
tem of a human being contains over 100 billion (1011) neurons and 1014 synapses in the human
nervous system [29]. The human brain performs simple computations without the help of a pro-
grammer. The human brain neuron’s switch time is about a few milliseconds which is about a
millionfold times slower than current computer elements, however, it has a thousandfold
greater connectivity than today’s supercomputers [30].

Neural networks are designed to simulate the human nervous system. They are a collection
or network of simple computational devices which are modeled after the architecture of the bio-
logical nervous systems. In order to understand the artificial neural nets, the biological nervous
system will be briefly described.

30

The building block of the nervous system and especially the brain is the neuron. A neuron
is a microprocessing unit. Each neuron receives and combines signals from many other neurons
through structures called dendrites. The dendrite will activate the firing of the neuron if the
combined signal is strong enough. The neuron then produces an output signal and the path of
the signal is along the axon which is a component of the cell. This simple type of transfer is
based on chemical reactions but there are electrical side effects that are measurable [31].

The brain contains over 100 billion neurons densely interconnected. The neurons and the
interconnection synapses are the key elements for neural information processing [32]. The axon
which is the output path of a neuron splits up and connects to the dendrites which are the input
paths of other neurons through a junction referred to as a synapse. Some neurons communicate
with only a few other local neurons and on the contrary other neurons communicate with thou-
sands of other neurons which may or may not be closeby. Figure 4.1 shows the basic structure
of biological neurons. More precisely, the neuron generates the action potential and propagates
this down the branches of axons, where axonal insulators restore and amplify the signal as it
propagates until it arrives at a synapse. The transmission across this junction is chemical and
the amount of signal that is transferred depends on the amount of neurotransmitters released by
the axon and received by the dendrites. This strength referred by the synaptic efficiency is what
is modified when the brain learns. The synapse and the processing of information in the neuron
produce the basic memory mechanism of the brain.

4.2 Artificial Neural Nets

4.2.1 Basic Structure of Artificial Neurons and Neural Networks

Artificial neural networks simulate human functions such as learning from experience, general-
izing from previous to new data, and abstracting essential characteristics from inputs containing
irrelevant data [33]. In an artificial neural network, the unit analogous to the biological neuron

Axon

Synapse

Dendrite

Figure 4.1 Structure of biological neurons [29] (reproduced with permission of Prentice-
Hall, Inc., Upper Saddle River, NJ 07458).

31

is known as a processing element which may be referred to as a PE. A single processing ele-
ment has many input paths which are comparable to the dendrites in the biological neuron. The
processing element combines the values of the input paths by some method. Summations are
usually used to combine the input values of the processing element. Once the input values are
combined, there is an internal activity level for the PE. The combined input is further modified
by a transfer function. One type of transfer function is a threshold function where information
only passes along if the combined activity level reaches a specified or given value. A second
type of transfer function is a continuous function of the combined input [34]. The output value
of the transfer function is generally passed directly to the output paths of the processing ele-
ment.

The input paths of the processing elements can be connected to output paths of other pro-
cessing elements through connection weights. The values of the connections weights corre-
spond to the strength of the neural connections. Each connection has a corresponding weight,
thus the signals on the input paths to a processing element are modified by the weights before
they are combined or summed. Therefore, the summation function is a weighted summation.
Figure 4.2 shows a simple artificial neuron model wherexi andwi are the inputs and connection
weights, respectively. In this figure, the analogous biological terms are shown in parentheses.

In the past, neural network research primarily concentrated on simple neural networks with
just one layer of output units which where either linear or nonlinear. In the early development
of neural networks, researchers understood that these simple neural networks could not accu-
rately predict the complexity of real-world problems. Many researchers such as Widrow and
Lehr [35] proposed using more complex neural network architectures in order to overcome the
deficiencies of the single-layered neural network. Neural networks became popular after the
introduction of multi-layered neural networks [36]. In a multi-layered neural network, there are
one or more hidden layers in-between the input layer and output layer. A hidden unit may be

Figure 4.2 Simple artificial neuron model or processing element. The analogous biological
neuron terms are shown in parentheses.

. .
 .

w1

w2

wn

f
f(w1x1,w2x2,...,wnxn)

x1

xn

x2

output

inputs

weights

Σ

(synapse)

(dendrites)

(axon)

32

connected to an input, output, and/or another hidden unit in a different hidden layer [37]. A
fully connected multi-layered neural network with two input neurons, two hidden layers with
three neurons in each layer and one output neuron is illustrated in Figure 4.3. In a layered neu-
ral network, neurons in every layer are associated with neurons in the previous layer only. Thus,
the signal flows from one set of neurons to another set of neurons.

4.2.2 History of Neural Nets

Neural networks can be traced back to neurobiology in the 1800’s. For many decades, scientists
were interested to find out how the human nervous system and other types of nervous systems
function. Researchers were trying to answer how nerves are stimulated, how much current is
needed to stimulate nerve cells, and how nerve cells communicate. Not until the mid-twentieth
century could scientists hypothesize or answer these questions and many others. Psychologists
were also interested in understanding how humans and animals perform certain tasks, such as
learning, forgetting, and recognizing. Many psycho-physical experiments helped scientists
understand how individual or group of neurons work [30].

A brief outline of the history of neural networks is given here for completeness; further
details can be found in the references cited. Rashevsky [38] initiated studies of neurodynamics
in 1938. He used differential equations to represent activation and propagation in a neural net-
work. McCulloch and Pitts using binary threshold functions invented the first artificial model of

Figure 4.3 A neural network with two hidden layers.

y1

x1

x2

output layerhidden layersinput layer

33

the biological neurons in 1943 [39]. In 1949, Hebb published his very influential book,The
Organization of Behavior[40], and introduced his famous learning rule which repeated activa-
tion of one neuron by another and across a particular synapse. In 1954, Gabor invented the
“learning filter” that used gradient descent to obtain the optimal weights that will minimize the
mean squared error between the predicted value and the observed value [41]. In 1958, Rosenb-
latt [42] invented the “perceptron” introducing a learning method for the McCulloch and Pitts
[39] neuron model.

Widrow and Hoff [43] in 1960 introduced the Adaline, Adaptive Linear Neuron, which is a
simple network trained by a gradient descent rule to minimize the mean squared error. The
Adaline and a two-layer neuron called the Madeline, Multiple Adaline, were used for a wide
range of applications including speech recognition, character recognition, weather prediction,
and adaptive control. Widrow used the adaptive linear element algorithm to create adaptive fil-
ters. These filters eliminated echoes and noise on telephone lines. This was the first time that
neural computing systems were used to solve a major real-world problem.

Rosenblatt in 1961 proposed the “backpropagation” scheme [44] for training multilayer
networks. His attempt was unsuccessful because he used non-differentiable node functions.
Marvin Minsky and Seymour Papert from MIT’s Research Laboratory of Electronics, began
their research on an in depth critique of the perceptron. Misky’s and Papert’s book,Perceptron
[45], on the limitations of the simple perceptrons was published in 1969. The work contained a
detailed mathematical analysis of an abstract version of Rosenblatt’s perceptron. They stated
that multi-layer neural networks have the same limitations as single-layer neural networks. This
resulted in a drastic reduction in funding and support for neural networks research.

The next two decades led to new research in neural networks where several different types
of studies were completed. One of the major accomplishments in this era was the combination
of many neurons into neural networks. Also, learning rules applicable to large neural networks
which were mostly based on gradient descent were developed. The major contributors were
Dryfus in 1962 [46], Bryson and Ho in 1969 [47], Anderson between 1972 and 1977 [48]-[49],
Werbos in 1974 [50], Grossberg in 1977 [51], McClelland and Rumelhart in 1986 [52], and
Kohonen [53].

Since gradient descent is often not successful in obtaining a desired solution, random, prob-
abilistic, or stochastic methods such as Boltzmann machines were developed by Ackley, Hin-
ton, and Seynowski in 1985 [54]; Kirkpatrick, Gelatt, and Vecchi on 1983 [55]; and many
others. Hybrid systems which are a combination of neural networks and non-connectionist
components were developed in 1986 by Gallant [56] and again many others contributed to this
research.

4.2.3 Current Applications of Neural Networks

Currently, there are many governmental, industrial, and academic research groups performing
work in neural networks development and applications. The research is being conducted in a
wide range of disciplines. For instance there is current work in neurosciences, cognitive psy-
chology, physics, computer science, mathematics, and engineering. In this section two exam-
ples of current applications of neural networks pertinent to aeronautical and aerospace research

34

are discussed. Several other examples [2-8] were previously discussed in Chapter 1.

First, a simple robot is “taught” the physical characteristics of the human brain with the aid
of neural networks [57]. The testbed consists of modified surgical hardware with a robotic mul-
tisensor probe, a computer, and neural net software. The probe is equipped with tiny sensors
including a pressure sensor. The probe enters the brain carefully and gently locates the edges of
tumors while preventing damage to critical arteries. Brain tumors typically have a different den-
sity than normal brain tissues. Dr. Robert Mah and his colleagues in their early research suc-
cessfully used tofu which is a food made from soybeans and with a consistency very similar to
brain tissue, to model the brain and to teach the neural nets what a normal brain tissue is. Next,
they used a special gel and noodles to simulate brain tissue and blood vessels during their
research. In the future, this research will aid surgeons and astronauts to perform surgery in
space.

Second, scientists at NASA Ames Research Center and Boeing/McDonnell Douglas Air-
craft Corporation are developing neural net software [58] that will allow airplanes that suffer
major equipment failures or explosions to be flown and land safely. In a catastrophic problem
such as damaged wings, fuselage holes, and sensor failures, the aircraft will handle differently
and sometimes the controls will not function properly or at all. Neural net software will allow
the aircraft’s computer to “relearn” to fly the damaged aircraft correctly in less than one second.
Aircraft sensors send velocity, direction, and force data to the computer program. Then the pat-
tern of what is actually occurring is compared with a pattern showing how the aircraft should
fly. When there is a mismatch in the patterns, the neural net software, which contains aeronauti-
cal stability and control equations, determines the correct pattern that the aircraft should fly
under the new conditions and adjusts the how the aircraft should fly.

4.3 Neural Network Operations

In neural networks, there are two main phases in the operation: learning and recall. In most
neural networks, these two phases are distinct.

Learning is the first phase and is the process of adapting or modifying the connection
weights in response to stimuli from the input layer or optionally the output layer. A stimulus
presented at the output layer corresponds to a desired response to a given input. This desired
response must be provided by a knowledgeable teacher [31]. This is known as supervised learn-
ing. Unsupervised learning is when there is no desired output shown.

Whether supervised or non-supervised learning is used, an essential characteristic of any
network is its learning rule. The learning rule determines how weights adapt in response to a
learning example. To learn, a network may require many examples to be shown once or many
thousands of times. The parameters that govern a learning rule may change over time as the net-
work learns. The long-term control of the learning parameters is referred to as the learning
schedule.

The second phase in the network operation is recall. Recall refers to how the network pro-
cesses a stimulus presented at its input layer and creates a response at the output layer. Often

35

recall is an integral part of the learning phase. For example, when a desired response of the net-
work must be compared to the actual output of the network to create an error signal.

4.4 Levenberg-Marquardt Algorithm

There are many types of algorithms that can be used to train neural nets. An effective algorithm
is the Levenberg-Marquardt algorithm. Levenberg [59] and Marquardt [60] independently
developed an elegant algorithm for the numerical solution of finding a local minimum of the
non-linear least squares problem. The Levenberg-Marquardt algorithm evolves from a steepest
descent algorithm to a quasi-Newton algorithm as optimization proceeds. In the method of
steepest descent, the search direction from a point is along the negative gradient direction at the
point [61]. In a quasi-Newton method (also referred to as a variable metric method), the Hes-
sian matrix which is the matrix of second partial derivatives and which may be difficult to eval-
uate, is replaced by a symmetric positive definite matrix which is updated in each iteration
without the need for matrix inversion [61]. The Levenberg-Marquardt algorithm has been suc-
cessfully used to train artificial neural networks [8], [62] - [63]. The Levenberg-Marquardt
algorithm is used in this present study to train the artificial neural nets. In order to understand
the algorithm, the nonlinear least squares optimization problem will be briefly discussed below,
followed by a derivation of the Levenberg-Marquardt algorithm.

4.4.1 Nonlinear Least Squares Optimization Problem

In a neural network, each neuron or processing element produces its output by computing the
inner product of its input signal and weight vectors and by passing the result through a nonlin-
ear function.

In training neural networks, the error criteria that is mostly used is the minimization of the
sum of squares of the error function. The error function for a network withM outputs andK
pairs of input and desired output presented to the network is

(4.1)

where thed and y denote the desired and actual outputs of the network, and the subscriptr
shows their dependence on therth input presentation.

In a feed-forward network, the input pattern is presented and propagates forward through
the network. Each processing element computes its output value using the prespecified set of
input weights. For the case of a network consisting ofL layers and thelth layer containsNl pro-
cessing elements, theLth layer is the output layer and the zeroth layer is the input layer. Then
each PE computes its output according to the following equations forl = 1, . . ., L andi = 1, . .
., Nl

EK
1
2
--- d m() y m()–[]r

2

m 1=

M

∑
r 1=

K

∑=

36

(4.2)

Here, denotes the output of theith PE belonging to thelth layer and is the weight of the
connection between thenth PE of the (l - 1) layer and theith PE of thelth layer. The functiong
is a nonlinear function, usually sigmoidal. is the threshold of theith PE of thelth layer. It
controls the processing element’s output when there are no signals to its input. In the following
discussion, the thresholds will be treated as weights that connect an input to the PE and the
threshold will always be on, thus its value will be one [62].

Next, a vector, , will be defined to contain all input weights to theith PE of thelth layer
and the threshold.

(4.3)

Likewise, create a vector,xl, which contains the outputs of all PE in thelth layer and an addi-
tional element set equal to one.

(4.4)

Now, equation (4.2) can be rewritten as follows

(4.5)

Next, define a vector,w, consisting of all the weights in the network. At a global or local
minimum of equation (4.1), the condition that the derivatives of this function with respect tow
be zero must be satisfied. Forming these derivatives, the following system of nonlinear equa-
tions forl = 1, . . ., L andi = 1, . . ., Nl

(4.6)

where the dimension of vector is(Nl-1 +1). Now form a global vectorF, consisting of all
vectors . An iterative technique can be used to solve the system of nonlinear equations
shown above in equation (4.6). For example, the Levenberg-Marquardt algorithm is an iterative
technique that has been shown to successfully solve nonlinear equations [8], [62] - [63].

xi
l

g wni
l

xn
l 1–() θi

l
+

n 1=

Nl 1–

∑

=

xi
l

wni
l

θi
l

wi
l

wi
l

w1i
l …wNl 1– i

l θi
l

T
=

xl
x1

l …xNl

l
1

T
=

xi
l

g wi
l()

T
xl 1–()

=

wi
l

f i
l

d m() y m()–[]r
T ∂y m()

∂wi
l

---------------–

rm 1=

M

∑
r 1=

K

∑ 0= =

f i
l

f i
l

37

4.4.2 Derivation of the Levenberg-Marquardt Algorithm

In the nonlinear least squares problem, the objective function that is being minimized is in the
form of a sum ofm squared terms

(4.7)

where . In solving this problem, the complicated step of finding the non-positive Hes-
sian matrices that is required in Newton’s method is avoided in the Levenberg-Marquardt algo-
rithm.

A quadratic model of the objective function,f, can be obtained from a truncated Taylor
Series expansion off(x) about(xk), which can be written as

(4.8)

is the resulting quadratic approximation for iterationk. The superscriptT denotes the
transpose. Here,d is the correction tox(k) defined as

(4.9)

andg(x) is the gradient vector

(4.10)

where is the first derivative operator andG(x) is the Hessian matrix (second deriva-
tive matrix)

(4.11)

Next, assume that some neighborhood ofx(k) is defined where agrees with
. Then it would be appropriate to choose

(4.12)

where the correction minimizes for all in . This type of method is
referred to as a restricted step method since the step is restricted by the region of validity of the
Taylor Series. can not be defined in a general manner. Thus, it is convenient to consider
the case

f x() r i x()[]2

i 1=

m

∑ r Tr= =

r r x()=

f xk
d+() q

k()
d()≈ f

k() g k()T

d
1
2
---d

TG k()
d+ +=

q
k()

d()

d x x k()
–=

g x() f x()∇=

∇ ∂ xi∂⁄()

G x() ∇2
f x()=

Ω k()
q

k()
d()

f xk
d+()

x k 1+() x k()
d

k()
+=

d
k()

q
k()

d() x k()
d+ Ω k()

Ω k()

38

 = : (4.13)

and to find the solution of the resulting subproblem

minimize subject to (4.14)

which can be solved for certain types of norms [64].

When the restricted step method of equation (4.14) is defined in terms of theL2 norm, the
method is characterized by solving a system

, (4.15)

in order to determine the correction . Here,I is the Identity matrix andν is a scalar. Leven-
berg in 1944 and Marquardt in 1963 independently developed an algorithm to solve the nonlin-
ear least squares problem by approximatingG(k) by

(4.16)

where

(4.17)

is then x m Jacobian matrix. The columns ofA are the first derivative vectors of the com-
ponents ofr ().

The solution of (4.15) using theL2 norms can be expressed

minimize : (4.18)

subject to (4.19)

and it is assumed thath(k) > 0. It can be proven that the correction is a global solution of
(4.18) if and only if there exists such that (4.15) holds. Thus,

(4.20)

and is positive semi-definite. Moreover, if is positive definite then is
the unique solution of (4.18).

Therefore, the Levenberg-Marquardt algorithm finds a value such that is

Ω k() x{ b
a x x k()

– h
k()≤ }

d
k()

q
k()

d() d h
k()≤

G k() νI+()d
k() g k()

–= ν 0≥

d
k()

G x() 2AA T≈

A x() r 1 r 2 … r m∇,,∇,∇[]=

r i∇
Aij r j xi∂⁄∂=

d q
k()

d() 1
2
---δTG k()

d g k()T
d+≡

d
T

d h
k()2

≤

d
k()

ν 0≥

ν h
k()2

d
k()T

d
k()

–() 0=

G k() νI+ G k() νI+ d
k()

ν 0≥ G k() νI+

39

positive definite and solves (4.15) to determine . This leads to the following algorithm [64]
for thekth iteration:

(i)givenx(k) and , calculateg(k) andG(k); (4.21)

(ii) factorize : if not positive definite, reset and repeat;

(iii) solve (4.15) to give ;

(iv) evaluate and hence ;

(v) if r (k) < 0.25 set

if r (k) > 0.75 set

otherwise set ;

(vi) if set else

Initially, is chosen arbitrarily. It should be noted that the parameters in step (v) are
arbitrary. In the present study, the values that are shown in the above algorithm are used in
training the neural networks.

4.5 Architecture of Neural Networks

The architecture of the neural networks in this study is a two-layer network with tangent hyper-
bolic activation functions in hidden layer units, and a linear transfer function in the output unit
[7]. It is found that a two-layer neural network is easier and faster to train than a single-layer
network [63]. Individual 4-input, 1-output networks are used to model each of the desired aero-
dynamic coefficients. A NASA Ames variation of the Levenberg-Marquardt training scheme is
used because it provides better accuracy than all schemes tested including the back-propagation
training method [63]. The single output networks for each of the aerodynamic coefficients yield
more precise modeling than multiple-output networks [4] and [8]. The neural network contains
15 nodes in the hidden layer and Figure 4.4 shows a sketch of the architecture.

The four independent input variables are flap deflection (δf), gap, overlap, and angle of
attack (α) as illustrated in Figure 4.4. The outputs are lift, drag and moment coefficients (Cl,
Cd, andCm) and the lift-to-drag ratio,L/D. Thus, four different neural networks are used to
train and predict each of the outputs.

d
k()

ν k()

G k() νI+ ν k()
4ν k()

=

d
k()

f x k()
d

k()
+() r k()

ν k 1+()
4ν k()

=

ν k 1+() ν k()
2⁄=

ν k 1+() ν k()
=

r k()
0≤ x k 1+() x k()

= x k 1+() x k()
d

k()
+=

ν 1()
0>

40

. .
 .

δf

gap

overlap

α

Cl

hidden layer output layerinput layer

Figure 4.4 Architecture of neural networks with 15 nodes in each hidden layer.

. .
 .

δf

gap

overlap

α

L/D

hidden layer output layerinput layer

. .
 .

δf

gap

overlap

α

Cd

hidden layer output layerinput layer

. .
 .

δf

gap

overlap

α

Cm

hidden layer output layerinput layer

41

Chapter 5

Optimization

Optimization can be defined as the science of determining the best solutions to certain mathe-
matically defined problems, which are often models of physical reality. Recently, there has
been significant increase of interest in the use of formal optimization techniques to improve
aeronautical and aerospace vehicles. In order for these optimum designs to be useful, it is nec-
essary to couple advanced and often complex analysis techniques inside the optimization pro-
cedure. In this study, computational fluid dynamics and neural networks are used in conjunction
with a gradient-based optimizer to improve the high-lift aerodynamics of an airfoil.

A brief description of the different types of optimization methods that are available will be
discussed in this chapter. The optimizer which is used in this study will then be presented
including a brief description of the algorithm. Lastly, the optimization with neural networks
procedure that is applied will be explained.

5.1 Optimization Methods

In the past, there have been many approaches in developing aerodynamic numerical optimiza-
tion to improve aircraft performance [65]-[66]. Most of these methods involve coupling some
type of optimizer with an aerodynamic analysis code. The aerodynamic analysis code can be a
computational fluid dynamics flow solver, wind tunnel data analysis tool, or a numerical tool.
Most of these approaches can be categorized into two types: direct and indirect numerical opti-
mization methods [67].

In the direct approach, an aerodynamic analysis code is coupled with a numerical optimizer
in order to minimize (or maximize) a given aerodynamic objective function. The direct method
minimizes a given aerodynamic objective function by iterating directly on the geometry. Often
this is accomplished by means of gradient evaluations [68]-[69]. The geometry of the body that
is being optimized can be represented by a general function or by parameters that define the
body. The desired shape of the body is found by iterating directly on the geometry until a local
minimum in the objective function is reached. Two fast methods for performing the gradient
evaluations are finite differencing and analytical sensitivity methods. Examples of the analyti-
cal methods include the one-shot method [70] and the adjoint method (also called the control
theory method) [71]-[72]. The one-shot method uses a multigrid technique to solve for the

42

unknowns simultaneously, while restricting optimization on a design variable to only grids that
produce non-smooth perturbations. On the other hand, the adjoint method solves the adjoint
equation of the Navier-Stokes equations in order to obtain the sensitivity direction. Since the
analytic methods typically employ modifications to the governing equations in the CFD code,
they require recoding of the flow solvers, objective functions, and boundary conditions.

The second class of optimization method is the indirect or inverse approach. The indirect or
inverse design method calculates the geometry from the prescribed aerodynamic distribution,
usually the pressure distribution. For instance, the target pressure distribution is optimized and
the corresponding geometry can be determined by the inverse methods. This process is repeated
until the resulting geometry satisfies specific geometry constraints and meets required perfor-
mance. The quality of the optimized shape depends on how well the distribution is defined.
This can lead to problems in translating the design goals into properly defined distributions [73]
containing the required aerodynamic characteristics. In addition, the inverse design method
does not easily handle geometric constraints.

The direct approach to optimization is used in this study. The flap high-lift settings will be
modified until the objective function which is to maximize the lift coefficient is optimum. The
neural networks are coupled with an optimizer that uses the finite difference method for the gra-
dient evaluation. An advantage of using the neural networks versus the traditional direct
approach is that once the neural networks are trained, no further grid generation and flow solu-
tions are required. In contrast, each time the design variables are modified in the traditional
direct methods, a new geometry is required to be configured and the aerodynamic coefficients
(required in the objective functions and constraints) to be calculated by whatever numerical tool
is used. Further, the design variables, objective function, constraints, and/or initial values can
easily be changed resulting in many optimization problems that can be solved with no addi-
tional geometry and grid generation, flow solution calculations, or large increase in computer
time.

5.2 NPSOL Optimizer

The optimizer that is used in this study is NPSOL [74]. NPSOL is chosen as the optimizer
for the following technical reasons: 1) flexibility, especially allowing constraints to be easily
coded and applied; 2) ability to handle both linear and non-linear constraints; 3) ability to solve
non-linear optimization problem; 4) validated and used by industry; 5) supported by Stanford
Department of Operations Research; and 6) simplicity in solving non-linear optimization prob-
lem. Further, it was chosen because of past experience [75]. NPSOL is a collection of Fortran
subroutines designed to solve the nonlinear programming (NP) problem stated as:

minimizeF(x)

subject to (5.1)

whereF(x) is the objective nonlinear function,x is a vector of lengthn that contains the design

l
x

Ax
c x()

u≤ ≤

43

variables,c(x) contains the nonlinear constraint functions, andA is the linear constraint matrix.
The variables,l andu are the upper and lower bound vectors that must be specified for each
design variable and constraint. The functionsF(x) andc(x) are assumed to be smooth which
means that they are at least twice-continuously differentiable. The term “programming” is syn-
onymous with “optimization” and was originally used to mean optimization in the sense of
optimal planning.

In order to locate the minimum ofF(x), the optimizer uses a sequential quadratic program-
ming (SQP) algorithm [74]. The search direction at each iteration is the solution of a quadratic
programming problem. Each quadratic programming subproblem is solved by a quasi-Newton
algorithm. The optimizer continues this process until it finds a local minimum ofF(x). The def-
inition of F(x), A, c(x), and their bounds need to be specified as inputs. The initial values of the
design variables should also be supplied.

The gradient of the objective function is the vectorg(x) defined to be

(5.2)

The gradient of each constraintci(x) forms theith row of the Jacobian matrixA(x)

(5.3)

An important consideration is the difference intervals. It should be noted that NPSOL has an
option to calculate the difference interval used in the finite difference approximation of the gra-
dient. However, in this study a common difference interval of 0.002 for all design variables is
specified as an input.

5.2.1 Optimization Algorithm

The method of NPSOL is a sequential quadratic programming (SQP) method. NPSOL involves
both major and minor iterations. The major iterations generate a sequence of iterates that
converge tox*, a first-order Kuhn-Tucker point of NP.

A point x is a first-oder Kuhn-Tucker point [64] for NP if the following conditions are true
[64]

(i) x is feasible;

(ii) there exist vectorsj andl (the Lagrange multiplier vectors for the bound and

general constraints) such that;

(5.4)

where if thej-th variable is free

g j x() ∂f x() ∂xj⁄≡

Aij ∂ci x() ∂xj⁄≡

xk{ }

g CT
l j+=

j j 0=

44

(iii) The Lagrange multiplier corresponding to an inequality constraint that is active

at its lower bound must be non-negative, and non-positive for an inequality constraint that is

active at its upper bound.

At the major iteration, the new iterate, , is defined as

(5.5)

wherex is the current iterate, the non-negative scalarα is the step length, andp is the search
direction. The search directionp is the solution of a quadratic programming (QP) subproblem
of the form

Here, the matrixH is a positive-definite quasi-Newton approximation to the Hessian of the
Lagrangian function; and lastly,AN is the Jacobian matrix ofc evaluated atx.

The lower bound vector,l, in NP is partitioned into three sections,lB, lL, andlN, correspond-
ing to the bound, linear, and nonlinear constraints. The vector in Equation (5.6) is similarly
partitioned as

(5.7)

The vectoru and are defined in a similar fashion.

In the quadratic programming subproblem, certain matrices are relevant in the major itera-
tions. A “working set” ofmw constraints is identified at each iteration and is updated iteratively
until it converges to the optimal QP active set. An important feature of the working-set con-
straints is that their gradients are linearly independent. This implies that . The con-
straints in the working set can be a simple-bound, linear, or nonlinear. IfC denotes themw x n
matrix of gradients of constraints, then

(5.8)

x

x x αp+=

minimize

(5.6)

subject to

gT p
1
2
--- pTHp+

l

p

AL p

AN p

u≤ ≤

l

lB lB x–=

lL lL x–=

lN lN x–=

u

mw n≤

CQ 0 T,[]=

45

whereT is a nonsingularmw x mw reverse triangular matrix

tij = 0 if i > j (5.9)

and the nonsingularn x n matrix Q is the product of orthogonal transformations [76]. This
comes from the TQ factorization ofC. Next, the upper-triangular Cholesky factorR of the
transformed Hessian matrix is

(5.10)

where is the approximate Hessian with reordered rows and columns if the columns ofQ are
partitioned so that

(5.11)

Thenz, defined as columns ofZ form a basis for the null space ofC. The matrixZ is
used to compute the reduced gradientZTg at the current iterate.

After p has been computed, the major iteration proceeds by determining a step length,α,
that produces sufficient decrease in an augmented Lagrangian merit function. Finally, the
approximation to the transformed Hessian matrixHQ is updated using a modified BFGS (Broy-
den, Fletcher, Goldfarb, and Shanno) [64] quasi-Newton update to incorporate new curvature
information obtained in the move fromx to .

To summarize, NPSOL first determines a point that satisfies both the bounds and con-
straints. Then, for each iteration a quadratic programming subproblem is solved. This is fol-
lowed by a line search with an augmented Lagrangian merit function. Lastly, there is a quasi-
Newton update of the approximate Hessian of the Lagrangian function. The last three proce-
dures are discussed in greater detailed in the sections below. The following description follows
the procedure from Gill et al. (for greater details refer to [74]).

5.2.2 Solution of the Quadratic-Programming Subproblem

The method used to determine the search directionp is a two-phase quadratic programming
method. The first phase is finding an initial feasible point by minimizing the sum of infeasibili-
ties and the second phase is minimizing the quadratic objective function within the feasible
region. A point is said to be feasible if it satisfies all the constraints in Equation (5.6) and the set
of all such points is referred to as the feasible region.

In general, a quadratic problem must be solved in an iterative method. Ifp denotes the cur-
rent estimate of the solution of Equation (5.6) then which is the new iterate is defined as

(5.12)

where σ is a nonnegative step length andd is the search direction.

RTR HQ QTHQ= =

H

Q ZY=

nz n m–≡

x

p

p p σd+=

46

For each iteration, a working set is defined by constraints that are satisfied exactly. The vec-
tor d is constructed so that the constraints remain unaltered for all moves alongd. The matrixC
is defined to be the matrix of gradients of constraints in the working set. The constrains will
remain unaltered if

(5.13)

which is equal to

(5.14)

for some vectordz. HereZ is the matrix associated with the TQ factorization ofC. If p is infea-
sible thendz is zero except for a componentγ in the jth position, wherej andγ are chosen to
minimize the sum of infeasibilities alongd. On the other hand, ifp is feasible thendz must sat-
isfy

(5.15)

whereRz is the Cholesky factor of . The gradient of the quadratic objective function isq
which is defined to be

(5.16)

With Equation (5.16), is the minimizer of the quadratic objective function subject to
treating the constraints in the working set as equalities.

5.2.3 The Merit Function

After computing the search direction as described above, each major iteration proceeds by
determining a step lengthα in Equation (5.5) that produces a sufficient decrease in the aug-
mented Lagrangian merit function

(5.17)

wheres is the change inx

(5.18)

Here,x, l, ands vary during the line search. Only the nonlinear constraints are in the summa-
tion terms in Equation (5.17). The vectorl is an estimate of the Lagrangian multipliers for the
nonlinear constraints of the nonlinear programming problem. The solution of the QP subprob-
lem; Equation (5.6), provides a vector triple that serves as a direction of search for three sets of
variables.

Cd 0=

d Zdz=

Rz
TRzdz ZTq–=

ZTHZ

q g Hp+=

p d+

L x λ s, ,() F x() λi ci x() si–() 1
2
--- ρi ci x() si–()2

i
∑+

i
∑–=

s x x–=

47

5.2.4 Quasi-Newton Update

In Equation (5.6), the matrixH is a quasi-Newton approximation to the Hessian of the
Lagrangian function and is positive-definite. A new Hessian approximation, , is defined as a
rank-two modification ofH at the end of a major iteration. In NPSOL, the BFGS quasi-Newton
update is used

(5.19)

Here,s is again the change in the new iterate from the old iterate as is defined in Equation
(5.18) NPSOL requires the Hessian,H, to be a positive definite matrix. IfH is positive definite,
then will be positive definite if and only if is positive [77]. In Equation (5.19),y would
be set toyL which is the change in the gradient of the Lagrangian function

(5.20)

where denotes the quadratic programming multipliers associated with the nonlinear con-
straints. NPSOL then makes an attempt to perform the update with a vectory if is not suf-
ficiently positive in the form

(5.21)

where . If no vector can be found that satisfies all the constraints and requirements then a
scaledyL is used to perform the update.

Instead of modifyingH itself, the Cholesky factor of the transformed Hessian,HQ Equation
(4) is updated, whereQ is the matrix from Equation (5.6) associated with active set of the QP
subproblem. The update in Equation (5.19) is equal to the following update toHQ

(5.22)

where and .

5.3 Optimization Procedure

The optimization problem in this study is to optimize the high-lift riggings to maximize the lift
coefficient. The design variables are flap deflection angle, gap, and overlap and the angle of
attack. The objective function which is defined to be the value or function that is being driven to
the optimal minimum or maximum is the lift coefficient in this study. The optimizer needs to
determine the gradient search direction in order to find the minimum objective function. In this

H

H H
1

sTHs
-------------HssTH–

1

yTs
--------- y yT

+=

H yTs

yL g AN
T µN– g– AN

T µN+=

µN
yL

Ts

y yL ωi ai x()ci x() ai x()ci x()–()
i 1=

mN

∑+=

ωi 0≥

HQ HQ
1

sQ
T HQsQ

--------------------HQsQsQ
T HQ–

1

yQ
T sQ

------------ yQyQ
T

+=

yQ QT y= sQ QTs=

48

study, the optimizer is integrated with the trained neural networks so that it can calculate the
gradient search direction. In some instances, a constraint is applied to the optimization prob-
lem.

The optimization procedure that is used in this study is shown in Figure 5.1. There are three
different phases in the optimization procedure: generate the training set, train the neural net-
works, and optimize. The first two phases need only to be performed once in this process.

The first phase is to generate the training set. In order to train the neural networks to accu-
rately predict the aerodynamic coefficients for a set of inputs, a training data set needs to be cre-
ated. As discussed in Chapter 4, the training data needs to have different sets of inputs and
outputs so that the neural network can learn to predict outputs for a given set of inputs which
are not in the training set. The neural networks need to be able to predict within the design
space that the optimizer will be searching. Thus, the training set must contain information
throughout the design space including the bounds of the design space. An important step is to
determine the sufficient number of input/output sets and which sets are required to successfully
train the neural networks. The approach that is used to train the neural networks in this study is
discussed thoroughly in Chapter 6. For each set of inputs which are the flap deflection, gap, and
overlap, a grid is generated as discussed in Section 3.3. For each grid, an angle-of-attack polar
is calculated by using INS2D (refer to Chapter 3) to calculate the flow solution. Now, a training
data set can be created that includes the various high-lift riggings as the inputs and the aerody-
namic coefficients as the outputs. This data set is then used in phase 2 to train the neural net-
works to accurately predict the aerodynamic coefficients for any set of inputs that is the design
space.

The trained neural networks are now used in phase three which is an iterative phase. In this
study, only one neural network is actually used because only the lift coefficient is used as the
objective function. However, the other aerodynamic coefficients can be easily used as part of
the objective function or constraints. The optimization phase begins with the optimizer generat-
ing a baseline objective function from the initial values of the design variables. This is accom-
plished by inputting the initial values of the design variables into the neural network which then
will predict the output, that is the lift coefficient, for those sets of design variables. One of the
most important advantages of the optimization process is that once the neural networks have
been trained, then new designs can be rapidly obtained. Whereas, the traditional optimization
process would require function evaluations (CFD simulations) for every new design consid-
ered. The next step that the optimizer performs is to perturb each of the design variables to cal-
culate the direction of the gradient using the previously obtained values from the neural net.
Figure 5.2 illustrates the details of the optimization process in phase 3. Using the neural net-
work, the optimizer continues to modify the design variables and search for the correct gradient
direction until a set of design variables is found with a local minimum objective function which
meets all the constraints.

49

GRID
GENERATION

COMPUTE
INS2D
FLOW

SOLUTIONS

TRAINING SET

(inputs and outputs)

PHASE 1: GENERATE TRAINING SET

PHASE 2: TRAIN NEURAL NETS

PHASE 3: OPTIMIZE
TRAINED
NEURAL

NPSOL

OPTIMIZER

INPUTS

OUTPUTS

OPTIMAL
CONFIGURATION

NETWORKS

Figure 5.1 The three phases of the neural network optimization procedure.

50

OPTIMAL
HIGH-LIFT
SETTING

Figure 5.2 Optimization process in phase 3.

TRAINED
NEURAL

NETWORKS

MODIFY
DESIGN

VARIABLES

GRADIENT
SEARCH

?
MAXIMUM
OBJECTIVE
FUNCTION

YESNO

OUTPUT
OBJECTIVE
FUNCTION

NEW
DESIGN

VARIABLES

INITIAL
DESIGN

VARIABLES

51

Chapter 6

Results and Discussion

As discussed earlier, the overall goal of this research is to develop a method that will allow
computational fluid dynamics to impact design. Neural networks are used to create an agile
artificial intelligence-enhanced design space capturing method. The neural networks reduce the
amount of data that is required to accurately define the aerodynamics of a geometry. The neural
networks are trained with both experimental and computational data for the Flap-Edge airfoil in
this study. The neural networks which are trained with the computational data set are then inte-
grated with an optimizer to help search the entire design space for certain points of interest,
such as extremes or confined subsets of the design space by constraining the search.

The results of this study are presented in the following subsections. The first subsection
examines the ability of the neural networks to learn and predict aerodynamic data on an experi-
mental data set. The next subsection discusses the training results for the computational data
sets, such as the learning curve of the neural networks and the need for a maximum lift criteria.
Next, a discussion on minimizing the amount of data needed for training is presented. The last
subsection explains the optimization results including the optimal high-lift riggings and the
savings on resources when using neural networks versus the traditional method in the optimiza-
tion process.

6.1 Experimental Training Set

The Flap-Edge airfoil [9] which was tested in the 7- by 10-Foot Wind Tunnel No. 1 at NASA
Ames Research Center will be used to show the validity of the neural networks. Experimental
data from the wind tunnel experiment will be used to train the neural networks and to test its
accuracy. There is limited wind tunnel data available for the three-element baseline Flap-Edge
wing. The data that is available is used to train the neural networks to predict the aerodynamics
of the Flap-Edge geometry. The training data consists of five different configurations with eight
different angles of attack for each configurations. There are a total of 40 input-output pairs used
in the training data set. Four individual neural networks are trained with five-inputs and a single
output. The inputs are slat deflection, angle of attack, flap deflection, gap, and overlap. The
individual outputs are the lift coefficient for the slat, main, and flap (, and) and
the total lift coefficient for the wing ().

Clslat
Clmain

, Cl flap

Cl total
Clslat

Clmain
Cl flap

+ +=

52

The neural networks are trained with the wind-tunnel experimental data for the full-slat
configuration. Then the accuracy of the neural networks is tested by predicting the lift coeffi-
cients for a configuration that is not included in the training set. The lift coefficients for each
element and the total lift coefficient versus angle of attack for , gaps = 2.0%c, ols = -
0.05%c, , gapf = 2.7%c, olf = 1.5%c are shown in Figure 6.1. The open symbols
represent the experimental data (exp) and the black-filled symbols represent the neural network
prediction (nn). The neural networks show good agreement for the main and flap elements,
however, there are some noticeable differences in both slope and magnitude in the slat lift coef-
ficient. Since the total lift coefficient is the summation of the individual lift coefficients, as
expected the total lift coefficient prediction has noticeable differences as well. This results from
the fact that the errors are also summed and amplify in the prediction of the total lift coefficient.
The prediction error in is most likely caused by the sparse training data since there were
only five different configurations used to train the neural networks.

6.2 Computational Training Set

All of the computations presented in this study are obtained using the INS2D-UP code in the
steady-state mode with the Spalart-Allmaras turbulence model. The flow was treated as fully
turbulent for all elements in the computations. The maximum residual in the solution is reduced

δs 6.0°=
δ f 39.5°=

Figure 6.1 Neural network prediction of experimental data for ,gaps = 2.0%c, ols

= -0.05%c, , gapf = 2.7%c, olf = 1.5%c.

0.0 5.0 10.0 15.0
α

-1.0

0.0

1.0

2.0

3.0

4.0

Cl

main (exp)
flap (exp)
slat (exp)
total (exp)
main (nn)
flap (nn)
slat (nn)
total (nn)

δs 6.0°=

δ f 39.5°=

Clslat

53

by 7 orders of magnitude and the maximum divergence in the converged solution is on the
order of 10-4 or less. A typical solution for the multi-element airfoil at small angles of attack
converged in 200 iterations for a total of 268 seconds (10.6 microseconds/iteration/point) on a
CRAY C90 computer. The solutions near maximum lift converged in 800 iterations for a total
of 1072 seconds. As the angle of attack increases and approaches the angle where maximum lift
occurs, the flow around the airfoil tends to separate from the top surface and create a large wake
of separated flow behind the airfoil. Inside this separated region, the flow is recirculating. The
flowfield near maximum lift is more complex and thus more time is required for convergence.

The neural networks are trained with computational data consisting of 54 geometric config-
urations. There are two slat deflection settings (and) and each has 27
different flap riggings as shown in Figure 6.2. The computational data is divided into two train-
ing sets, one for each slat deflection setting. By only having two slat settings, the data would be
represented linearly if the slat setting is used as a training input; this is invalid since the aerody-
namic relationship is known to be non-linear. The large numbers in the shaded boxes in Figure
6.2 represent the case number for that particular flap rigging. Cases 1 through 27 are used to
train the neural networks for and likewise, cases 28 through 54 are used to train the

data. Both slat deflections have three flap gap settings ofgapf = 1.5, 2.1, and

δs 6.0°= δs 26.0°=

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

δf = 25.0 deg. δf = 38.5 deg.δf = 29.0 deg.

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

δf = 53.0 deg. δf = 38.5 deg.δf = 49.0 deg.

δs = 6.0 deg.

δs = 26.0 deg.

1

4

7

10 19

13 22

16 25

3 12 21

6 15 24

9 18 27

28

31

34

29

32

35

30

33

36

37

40 41 42

43 44 45 545352

38 3946

49

47

50 51

48

Figure 6.2 Computational cases used to train the neural networks.

gap

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

2 11 20

5 14 23

8 17 26

δs 6.0°=
δs 26.0°=

54

2.7%cand three flap overlap settings ofolf = 0.4, 1.0,and1.5%c.The flap deflection angles for
the six-degree-deflected slat are , , and . The twenty-six-degree-
deflected slat has flap deflections of , , and . Although these flap
deflections are higher than what is normally used in flight, they are acceptable for demonstrat-
ing the capability of the coupled optimization method. In one optimization study, the additional
deflection flaps, and , are added to the training data for (refer to
Section 6.4). The same set of gap and overlap matrix is used. Thus, there are 45 configurations
in the training set for this particular optimization run. The range of angle of attack varies from

 in this study.

6.2.1 Learning Curve

The training data is presented to the neural network for it to learn the relationship between the
input and output variables. It is important to know how many times (iterations) to present the
data to the neural network. To determine the correct number of iterations that will be used to
train the neural networks in this study, the training set for the six-degree-deflected slat is used to
train the neural networks with various iterations. The correct number of iterations required to
train neural networks is dependent on the inputs and outputs. Thus, a user must determine the
required number of iterations for each study performed. The root-mean-square (rms) error of
the predicted output and the actual computational value for each aerodynamic coefficient is cal-
culated and is shown in Figure 6.3 for a high-lift setting that was not included in the training
set. The case that is used to test the accuracy of the prediction has a flap setting of ,
gapf = 2.1%c,andolf = 1.0%c. Figure 6.3 shows the rms errors forCl, Cd, andCm on the left
vertical axis and forL/D on the right vertical axis. All four aerodynamic coefficients show the
same trend. There is an improvement in the rms error up to a certain iteration number and then
there is no further improvement as the iterations to train the neural network increase. ForCd,
the rms error continues to drop until 300 iterations and then there is no further improvement in
the error. The rms error forCm drops until about 250 iterations and once again there is no fur-
ther improvement. The rms error for the lift-to-drag ratio continues to drop until about 450 iter-
ations. In the case forCl, the rms error drops until about 300 iterations with no additional
improvement.

The rms error for the six-degree-deflected slat cases (cases 1 - 27) are calculated to further
aid in determining the correct iteration number to use to train the neural networks to predict the
aerodynamic coefficients accurately. The average of the rms errors for all twenty-seven cases
for each of the different values of the iterations used for training is shown in Figure 6.4. ForCd
andCm, as the iterations increase there is a decrease in rms error until 400 and 300 iterations,
respectively. Then the rms errors increase as the iterations increase. ForCl, the rms error is low-
est at 250 iterations and then continues to slowly increase as the iterations increase. At 550 iter-
ations, there is a big increase in the rms error. TheL/D rms error decreases until 450 iterations
and then like the other aerodynamic coefficients, the error also increases as the iterations rise.

The neural networks that model the aerodynamic coefficients are overtrained at the higher
iterations. This phenomenon has been observed by others [30] where excessive training on the
training data sometimes decreases the performance of the networks. The neural networks are
starting to memorize the points and go through the points instead of learning the patterns and
interpolating. When the data is seen too much by the neural networks, it may lead to spurious

δ f 25.0°= 29.0° 38.5°
δ f 38.5°= 49.0° 53.0°

δ f 49.0°= 53.0° δs 6.0°=

0.0° α 22.0°< <

δ f 29.0°=

55

decision boundaries or cause overfitting of the model and poor interpolation. For these reasons
and since these neural networks are going to be used to optimize flap riggings for maximum
lift, 250 iterations are used to train the neural networks in this study becauseCl showed the best
accuracy at this iteration level.

6.2.2 Maximum Lift Criteria

The flowfield about a multi-element airfoil that is designed for high-lift is very complex and is
not easily computed by any method that is reported in the literature [11], [78]. Some of the dif-
ficult features to capture are trailing viscous wakes whose strength and location vary with angle
of attack, merging wakes and boundary layers, different transition phenomena on each of the
airfoils elements, boundary-layer separation, and reversed flows in the main element wake. In
addition, the airfoil performance varies with Reynolds and Mach number [79], [80]. Lastly, the
determination of maximum lift is one of the most important results of any high-lift wing design
study. No current fully computational method is able to resolve all these features and accurately
predict maximum lift. Thus, an empirically based maximum lift criteria has been implemented.

0 100 200 300 400 500 600
iterations

0.000

0.010

0.020

0.030

0.040

0.050

rm
s

e
rr

o
r

Cl

Cd

Cm

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

L
/D

 r
m

s
e

rr
o

r

L/D

Figure 6.3 Learning curve of the neural networks used to predict the aerodynamics for
high-lift setting of ,gaps = 2.0%c, ols = -0.05%c, , gapf = 2.1%c, olf
= 1.0%c. This case is not included in the training set.

δs 6.0°= δ f 29.0°=

56

Figure 6.5 shows a plot for the computed angle-of-attack polar curve for a high-lift setting
of , gaps = 2.0%c, ols = -0.05%c, , gapf = 2.7%c, olf = 0.4%c. It is
shown that the computational curve never bends over (Cl continues to increase withα) and thus
does not accurately predict the maximum lift. Previous studies [78] have also shown that state-
of-the-art two-dimensional theory can not accurately predict maximum lift. Valarezo and Chin
[78] reported a hybrid method that couples cost-effective computational fluid dynamics tech-
nology with empirically-observed phenomenon in order to predict maximum lift for
complex multi-element wing geometries. Their semi-empirical criteria for multi-ele-
ment airfoils or wings, designated the pressure difference rule, is applied to the computational
training data set. The pressure difference rule (PDR) states that for a given Reynolds and Mach
number combination, there exists a certain difference between the peak suction pressure and
the trailing edge pressure at the maximum lift condition

(6.1)

For the flow conditions of this study, the pressure difference value is -13.0. The rule is applied
to each element of the airfoil. The slat is the element that has pressure differences greater than
the acceptable value, thus this is the critical element in determining the maximum lift for this

0 100 200 300 400 500 600
iterations

0.000

0.010

0.020

0.030

0.040

0.050

rm
s

e
rr

o
r

Cl

Cd

Cm

0.0

1.0

2.0

3.0

4.0

5.0

6.0

L
/D

 r
m

s
e

rr
o

r

L/D

Figure 6.4 Average rms error for cases 1 - 27 for the six-degree slat deflection training set.

δs 6.0°= δ f 38.5°=

Clmax
()

Clmax

∆Cpdiff
Cppeak

Cpte
–=

57

configuration.

By applying the pressure difference rule to the training data set, the set is then reduced to
include only the data points that are at or below the maximum lift. In order to accurately repre-
sent the aerodynamic data, the data points that had a larger angle of attack than where maxi-
mum lift is predicted are not used. As Figure 6.5 illustrates for one rigging, the maximum lift
occurs near an angle of attack of for this design space, thus only the data up to and
including is used in the training set for this high-lift rigging. Although this particu-
lar configuration was not tested in the wind-tunnel, the angle where maximum lift is predicted
is near where the expected experimental value would be by observations of similar configura-
tions.

In order to see if the neural networks would predict the non-linear aerodynamic data better
once the pressure difference rule is applied, the neural networks are trained with the entire data
set for the six-degree-deflected slat and then also with the processed data set that includes only
data up to and containing maximum lift. The comparison of the rms error for each training set
is shown in Figure 6.6 for cases one through twenty-seven. For all four outputs,Cl, Cd, Cm, and
L/D, the rms error is much lower when the pressure difference rule is applied. As expected, the

0.0 10.0 20.0 30.0
α

1.0

2.0

3.0

4.0

5.0

Cl

No Pres Diff Rule
Pres Diff Rule Applied

Figure 6.5 Computational lift coefficient versus angle of attack for ,gaps =

2.0%c, ols = -0.05%c, , gapf = 2.7%c, olf = 0.4%c.

δs 6.0°=

δ f 38.5°=

α 12.0°=
α 12.0°=

58

Figure 6.6 Comparison of rms error for maximum lift criteria.

0.0 3.0 6.0 9.0 12.0 15.0 18.0 21.0 24.0 27.0
Case Number

0.00

0.02

0.04

0.06

0.08

0.10

0.12

C
l R

M
S

 E
rr

or

PDR
No PDR Applied

a)Cl rms error

0.0 3.0 6.0 9.0 12.0 15.0 18.0 21.0 24.0 27.0
Case Number

0.00

0.02

0.04

0.06

C
d

R
M

S
 E

rr
or

PDR
No PDR Applied

b) Cd rms error

59

Figure 6.6 (continued) Comparison of rms error for maximum lift criteria.

0.0 3.0 6.0 9.0 12.0 15.0 18.0 21.0 24.0 27.0
Case Number

0.00

0.02

0.04

0.06

C
m
 R

M
S

 E
rr

or

PDR
No PDR Applied

c) Cm rms error

0.0 3.0 6.0 9.0 12.0 15.0 18.0 21.0 24.0 27.0
Case Number

0.0

5.0

10.0

15.0

20.0

25.0

30.0

L/
D

 R
M

S
 E

rr
or

PDR
No PDR Applied

d) L/D rms error

60

training data is now more accurately representative of the actual aerodynamic data and the neu-
ral network is able to predict the aerodynamics more accurately. The lift coefficient versus
angle of attack is shown in Figure 6.7 for case 9 which has a high-lift setting of ,
gaps = 2.0%c, ols = -0.05%c, , gapf = 2.7%c, olf = 0.4%c.When the pressure dif-
ference rule is not applied to the training data, the neural network prediction is less accurate,
particularly at the higher angles of attack, as shown in Figure 6.7a. Here, the black filled circles
represent the actual INS2D computational data and the open circles represent the neural net-
works prediction. Even atα = 8.0 and10.0degrees, the neural net prediction differs slightly
from the computational or actual value. For this case, the rms error for the lift coefficient is
bounded by (0.0070 <Cl rms error < 0.1149). When the pressure difference rule is applied,
however, the neural network’s prediction are more accurate and is bounded by (0.0019 <Cl rms
error < 0.0152). The rms error is decreased by -87% when the pressure difference rule is
applied. The neural network does an excellent job at predicting the lift coefficient for all the
angles of attack that are within predicted maximum lift as shown in Figure 6.7b.

In summary, the computational data in the region beyond the predicted maximum lift seems
to be non-physical and is very different for each flap rigging which hinders the ability of the
neural networks to learn and to predict the aerodynamics. For the remainder of the study, the
neural networks are trained with 250 iterations and with the data set only consisting of data up
to and including maximum lift location which is predicted by the pressure difference rule.

6.3 Minimizing Training Data Samples

Even though the computational data base that is used for training is sparse, a study is conducted
to see how much further the training set can be reduced and still allow the neural networks to
predict within the acceptable error. By reducing the training data set further, the required com-
putational resources can be decreased [7].

The six-degree-deflected slat data is used for the majority of the reduction of data study.
Several subsets of the computational data are created to train the neural networks and to test the
accuracy of the prediction. Each configuration that is generated has its flowfield computed at
several angles of attack but not necessarily at the same angles. The number of angles of attack
also varies for each configuration. In general, once the grid is generated, it does not acquire
extra effort to compute solutions at different angles of attack. The neural networks, are there-
fore trained using data sets which contain various numbers of configurations which include
their individual angle of attack polar. Nine different subsets are created by removing entire con-
figurations from the training set as shown in Figure 6.8. Here, the boxes that are shaded repre-
sent the cases that are in the training sets, whereas the numbers in the white boxes and in
parentheses are the cases that are omitted from the training sets. The training sets are first cre-
ated by randomly omitting cases from the entire data set. The results from these sets are then
examined which leads to more carefully chosen training sets.

The neural networks are trained with each individual training data set with the flap deflec-
tion, gap, and overlap, and angle of attack as the inputs. The outputs for the neural networks are
the lift, drag, and moment coefficients and the lift-to-drag ratio. Four identical neural networks
are used to model the aerodynamics of the multi-element airfoil. Each network is trained with

δs 6.0°=
δ f 38.5°=

61

Figure 6.7 Neural net prediction with and without the pressure difference rule applied for
, gaps = 2.0%c, ols = -0.05%c, , gapf = 2.7%c, olf = 0.4%c.

0.0 5.0 10.0 15.0 20.0 25.0
α

1.0

2.0

3.0

4.0

5.0

Cl

INS2D
NN

a) No Pressure Difference Rule Applied

0.0 5.0 10.0 15.0 20.0 25.0
α

1.0

2.0

3.0

4.0

5.0

Cl

INS2D
NN

b) Pressure Difference Rule Applied

δs 6.0°= δ f 38.5°=

62

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

δf = 25.0 deg.

1

4

7

10 19

13 22

16 25

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

δf = 29.0 deg.

2 11 20

5 14 23

8 17 26

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

δf = 38.5 deg.

3 12 21

6 15 24
9 18 27

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

1

4

7

10 19

(13) (22)

(16) (25)

2 11 20

5 (14) (23)

8 (17) (26)

3 12 21

6 (15) (24)

9 (18) (27)

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

(1)

4

(7)

10 (19)

(13) 22

16 (25)

(2) 11 (20)

5 (14) 23

(8) 17 (26)

(3) 12 (21)

6 (15) 24
(9) 18 (27)

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

1

(4)

7

(10) 19

13 (22)

(16) 25

2 (11) 20

(5) 14 (23)

8 (17) 26

3 (12) 21

(6) 15 (24)

9 (18) 27

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

1

(4)

7

(10) 19

13 (22)

(16) 25

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

(2) 11 (20)

5 (14) 23

(8) 17 (26)

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

3 (12) 21

(6) 15 (24)

9 (18) 27

a) Method 1

b) Method 2

c) Method 3

d) Method 4

e) Method 5

Figure 6.8 Training data subsetsδs = 6 (shaded boxes represent cases that are included in
the training set whereas the cases in the white boxes and parentheses are omitted).

°

63

four inputs and one output. From the previous conclusions, the neural networks are trained with
250 iterations and the pressure difference rule is applied to each training set. Then to test the
accuracy of the neural networks ability to predict data, the rms error of the predicted value and
the actual computed INS2D value forCl, Cd, andCm are calculated for all 27 cases even if they
were not included in the training set. This will show the accuracy of each training method to
predict cases that and are not included in the training set. TheL/D rms error is not shown in
these plots within the next subsection for clarity since the values are on a different scale. How-

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

(1)

4

(7)

10 (19)

(13) 22

16 (25)

2 (11) 20

(5) 14 (23)

8 (17) 26

(3) 12 (21)

6 (15) 24
(9) 18 (27)

δf = 25.0 deg. δf = 29.0 deg. δf = 38.5 deg.

i) Method 9

h) Method 8

f) Method 6

g) Method 7

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

1

(4)

7

(10) 19

13 (22)

(16) 25

(2) 11 (20)

5 14 23
(8) 17 (26)

3 (12) 21

(6) 15 (24)

9 (18) 27

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

1

4

(7)

10 19

13 (22)

(16) 25

(2) 11 (20)

5 14 (23)

8 17 26

3 (12) 21

6 15 24
(9) 18 27

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

1

4

7

10 19

13 (22)

(16) 25

(2) 11 (20)

5 14 (23)

8 17 26

3 (12) 21

6 15 24
(9) 18 27

Figure 6.8 (continued) Training data subsetsδs = 6 (shaded boxes represent cases that are
included in the training set whereas the cases in the white boxes and parentheses are omitted).

°

64

ever, the same trends are seen forL/D asCl, Cd, andCm.

6.3.1 Subsets of Training Data for Six-Degree-Deflected Slat

Method 1 designates the training set which includes all the configurations in the training
set. As expected, this has the lowest rms error for all the training methods tested since all the
configurations tested are included in the training set. The rms errors forCl, Cd, andCm are
shown in Figure 6.9. Method 1 represents the training data in a nonlinear fashion for all four
inputs (δf, gapf, olf, andα). Method 1 predictsCd andCm with almost no error for all 27 cases.
Cl is predicted within the acceptable error. Case 27 which has a flap setting of ,
gapf = 2.7%c,andolf = 1.5%chas the highest prediction error. Case 27 is the boundary of the
design space and this may lead to the problem since there is no data for the neural networks to
learn on the outer boundary that has values greater than it.

The next method that is used to train the neural networks is Method 2 which has a nonlinear
representation of the flap deflection and angle of attack. The other two inputs, flap gap and
overlap, are represented in a linear manner. This method contains 56% of the configurations in
the entire training set. The rms errors (Figure 6.10) are low for the cases that are in the training
set and high for the cases that are not included in the training. TheCl rms error is greater that
what is acceptable for six of the cases. This method was expected to do poorly since it repre-
sents the aerodynamic data as linear when it is known to be non-linear.

Another subset tested to train the neural networks is a checkerboard method. Method 3 con-
tains only interior points of the checkerboard as shown in Figure 6.12. This method contains
44% of the total configurations. This method predicts poorly for cases that are not in the train-
ing set as shown in Figure 6.11. The prediction level forCl andCm are not within the acceptable
range. Examining the cases that are in Method 3 shows that this is a bad representation of the
data since their is no configuration with the following gap and overlap combinations:gapf =
1.5%cwith olf = 0.4 and1.5%c; gapf = 2.1%cwith olf = 1.0%c; andgapf = 2.7%cwith olf =
0.4 and1.5%c. Thus, the data is represented in a linear fashion which is incorrect.

Method 4 is another checkerboard subset which contains only the cases excluded from
Method 3 in the training set as is illustrated in Figure 6.8. Here, the corners and middle cases
are kept and the interior cases are omitted. Method 4 contains 56% of the entire training set.
The neural networks when trained with Method 4 predict poorly the cases which are omitted
from the training set as was seen previously. Figure 6.12 shows theCl andCm prediction error
are higher than what was set to be acceptable for the omitted cases. Like, Method 3, there is no
representation of the configurations with some particular combinations:gapf = 1.5%cwith olf
= 1.0; gapf = 2.1%cwith olf = 0.4 and1.5%c; andgapf = 2.7%cwith olf = 1.0%c.

The next training set tested, Method 5, is a combination of Methods 3 and 4 as shown in
Figure 6.8. For and , the corner and middle high-lift riggings are used in
the training set. In contrast, the interior ones are kept in the training set for . Thus,
there is representation in the training set for every high-lift rigging combination even though
they are for various flap deflections. The rms errors (Figure 6.13) show that the prediction for
Cl, Cd, andCm are very good for the cases that are in the training set. Even though there are a
few cases which were not included in the training where theCl rms error is high, the prediction

δ f 38.5°=

δ f 25°= δ f 38.5°=
δ f 29.0°=

65

for several of the cases is quite good. TheCd prediction for most of the cases (included or not in
the training set) is good. The moment coefficient prediction is accurate for most of the configu-
rations in the training set. Also, theCm prediction is good for more than half of the cases omit-
ted in the training set.

The next method that was tested is the reverse of Method 5 as shown in Figure 6.8. Method
6 contains only 48% of the total configurations. This method did a poor job of training the neu-

0 3 6 9 12 15 18 21 24 27
Case Number

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
M

S
 E

rr
or

Cl

Cd

Cm

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

δf = 25.0 deg.

1

4

7

10 19

13 22

16 25

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

δf = 29.0 deg.

2 11 20

5 14 23

8 17 26

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

δf = 38.5 deg.

3 12 21

6 15 24

9 18 27

Figure 6.9 Summary of rms error from neural network prediction of aerodynamic coefficients
for Method 1. Shaded boxes indicate which flap configurations are contained in the training
data set.

66

ral nets to predictCl for the cases that are omitted from the training set as shown in Figure 6.14.
Surprisingly, theCd andCm prediction is good for 26 out of the 27 cases. Case 9 has highCd
andCm rms errors and is one of the boundary points of the design space. The neural net, for the
most part, predicts the lift coefficient accurately for the high-lift settings that are in the training
set.

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

δf = 25.0 deg. δf = 38.5 deg.δf = 29.0 deg.

1

4

7

10 19

(13) (22)

(16) (25)

2 11 20

5 (14) (23)

8 (17) (26)

3 12 21

6 (15) (24)

9 (18) (27)

Figure 6.10 Summary of rms error from neural network prediction of aerodynamic
coefficients for Method 2. Shaded boxes indicate which flap configurations are contained in
the training data set.

0 3 6 9 12 15 18 21 24 27
Case Number

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
M

S
 E

rr
or

Cl

Cd

Cm

67

Since Method 5 has been found to be the best subset to use to train the neural networks to
predict the aerodynamics accurately, the following subsets are created by adding configurations
back to Method 5. Method 7 was created by added one more configuration to be included in the
training set. Case 14 was added back into the training data set and now Method 7 contains 56%
of the entire data. The neural networks predictCl, Cd, andCm accurately for all the cases in the
training set as is illustrated in Figure 6.15. Now, for the cases which are not included in the

0 3 6 9 12 15 18 21 24 27
Case Number

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
M

S
 E

rr
or

Cl

Cd

Cm

Figure 6.11 Summary of rms error from neural network prediction of aerodynamic
coefficients for Method 3. Shaded boxes indicate which flap configurations are contained in
the training data set.

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

δf = 25.0 deg. δf = 38.5 deg.δf = 29.0 deg.

(1)

4

(7)

10 (19)

(13) 22

16 (25)

(2) 11 (20)

5 (14) 23

(8) 17 (26)

(3) 12 (21)

6 (15) 24

(9) 18 (27)

68

training set, Method 7 does a fairly good job training the neural network to predictCl andCm.
There are a few cases that predict poorly but there also are more cases that do very well. Also,
Cd is predicted very accurately for all 27 configurations.

To further improve the accuracy of the prediction while still reducing the number of config-
urations relative to the full training set, careful selections of the configurations contained in the

0 3 6 9 12 15 18 21 24 27
Case Number

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
M

S
 E

rr
or

Cl

Cd

Cm

Figure 6.12 Summary of rms error from neural network prediction of aerodynamic
coefficients for Method 4. Shaded boxes indicate which flap configurations are contained in
the training data set.

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

δf = 25.0 deg. δf = 38.5 deg.δf = 29.0 deg.

1

(4)

7

(10) 19

13 (22)

(16) 25

2 (11) 20

(5) 14 (23)

8 (17) 26

3 (12) 21

(6) 15 (24)

9 (18) 27

69

training set are created. An example of a subset that is very successful in training the neural net-
works to predict the aerodynamics of the Flap-Edge geometry is Method 8. Method 8 contains
70% of the data of the full training set. As is apparent by the error bars in Figure 6.16, the error
is low for most cases and is well within the acceptable error even for the cases that are not in the
training set. TheCl rms errors are exceptionally high for cases 6, 9, and 22. Cases 9 and 22 are
not in the training set, however, case 6 is included. Both the drag and moment coefficient pre-

0 3 6 9 12 15 18 21 24 27
Case Number

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
M

S
 E

rr
or

Cl

Cd

Cm

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

δf = 25.0 deg.

1

(4)

7

(10) 19

13 (22)

(16) 25

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

δf = 29.0 deg.

(2) 11 (20)

5 (14) 23

(8) 17 (26)

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

δf = 38.5 deg.

3 (12) 21

(6) 15 (24)

9 (18) 27

Figure 6.13 Summary of rms error from neural network prediction of aerodynamic
coefficients for Method 5. Shaded boxes indicate which flap configurations are contained in
the training data set.

70

dictions are very good and the errors are low. Overall, the prediction is good for this method
and if the designer can tolerate a small percent of high error in a few cases in exchange for the
computer resources that are being saved, about 30%, this method is well worth it.

The last subset that is tested is Method 9. Method 9 is similar to Method 8 except one more
configuration (case 7) is added back to the training set. Method 9 has a total of 74% of the total

0 3 6 9 12 15 18 21 24 27
Case Number

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
M

S
 E

rr
or

Cl

Cd

Cm

Figure 6.14 Summary of rms error from neural network prediction of aerodynamic
coefficients for Method 6. Shaded boxes indicate which flap configurations are contained in
the training data set.

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

δf = 25.0 deg. δf = 38.5 deg.δf = 29.0 deg.

(1)

4

(7)

10 (19)

(13) 22

16 (25)

2 (11) 20

(5) 14 (23)

8 (17) 26

(3) 12 (21)

6 (15) 24

(9) 18 (27)

71

configurations in the training set. The rms errors, shown in Figure 6.17, are low and within the
acceptable range for most of the configurations. Only three cases (9, 16, and 22) have aCl rms
error above the acceptable error and only case 9 is exceptionally high. These three cases are not
included in the training set. The drag prediction is good for all cases. On the other hand, the
moment prediction is high for the same three cases as the lift prediction. Once again, by allow-
ing this small error to be acceptable, valuable resources will be saved (26%) by training the

0 3 6 9 12 15 18 21 24 27
Case Number

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
M

S
 E

rr
or

Cl

Cd

Cm

Figure 6.15 Summary of rms error from neural network prediction of aerodynamic
coefficients for Method 7. Shaded boxes indicate which flap configurations are contained in
the training data set.

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

δf = 25.0 deg. δf = 38.5 deg.δf = 29.0 deg.

1

(4)

7

(10) 19

13 (22)

(16) 25

(2) 11 (20)

5 14 23

(8) 17 (26)

3 (12) 21

(6) 15 (24)

9 (18) 27

72

neural networks with Method 9 to predict the aerodynamic coefficients.

6.3.2 Mean and Standard Deviation

The mean and standard deviation of each method’s rms errors of the lift, drag, and moment
coefficients are calculated to evaluate the accuracy of the predictions obtained using the various

0 3 6 9 12 15 18 21 24 27
Case Number

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
M

S
 E

rr
or

Cl

Cd

Cm

Figure 6.16 Summary of rms error from neural network prediction of aerodynamic
coefficients for Method 8. Shaded boxes indicate which flap configurations are contained in
the training data set.

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

δf = 25.0 deg. δf = 38.5 deg.δf = 29.0 deg.

1

4

(7)

10 19

13 (22)

(16) 25

(2) 11 (20)

5 14 (23)

8 17 26

3 (12) 21

6 15 24

(9) 18 27

73

training sets. The mean rms errors for Methods 1-9 for the six-degree-deflected slat is shown in
Figure 6.18. Likewise, the standard deviation of the rms error for the six-degree-deflected slat is
shown in Figure 6.19. Both figures show, as one would anticipate, Method 1 has the lowest
mean and standard deviation. This is also clearly seen in Figure 6.9 that showed Method 1 to
have almost no errors in predicting the aerodynamic coefficients. This is expected since all
cases are included in the training set. The highest rms errors are obtained by Method 4 which

0 3 6 9 12 15 18 21 24 27
Case Number

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
M

S
 E

rr
or

Cl

Cd

Cm

Figure 6.17 Summary of rms error from neural network prediction of aerodynamic
coefficients for Method 9. Shaded boxes indicate which flap configurations are contained in
the training data set.

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

δf = 25.0 deg. δf = 38.5 deg.δf = 29.0 deg.

1

4

7

10 19

13 (22)

(16) 25

(2) 11 (20)

5 14 (23)

8 17 26

3 (12) 21

6 15 24

(9) 18 27

74

contains 55% of the data. This method is generated by choosing the corners and the center of
each deflection matrix as shown in Figure 6.8. Examining this method closely shows that there
is not enough representation of the different combinations of high-lift configurations to train the
neural networks to learn and to predict the aerodynamics of the Flap-Edge geometry. This led
to the more carefully chosen methods of 5, 7, 8, and 9.

Method 5 (Figure 6.13) is the most accurate method of training if only approximately 50%
of the data is available. Method 5 consists of 52% of the total configurations but more impor-
tantly, it contains a good variety of the different flap deflections, gaps, and overlaps and combi-
nations of these to accurately represent the aerodynamics of the multi-element airfoil. Method 7
is also accurate and contains only 56% of the total configurations. If more computer resources
are available, then Methods 8 and 9 can be used to train the neural networks. These methods
have the lowest mean and standard deviations of the rms errors besides Method 1. Methods 8
and 9 contain 70% and 74% of the entire training set, respectively, and their mean rms errors
are below the acceptable error. Again, these methods have a good representation of the high-lift
riggings within the design space. Thus, with only 70% of the sparse training data set, the neural
networks can be trained to accurately predict the aerodynamic performance of a multi-element
airfoil.

0 1 2 3 4 5 6 7 8 9 10
method

0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

m
ea

n
Cl

Cd

Cm

Figure 6.18 Mean rms errors for subsets of the training data for six-degree slat deflection.

75

The same procedure that is used for the slat with six-degree-deflected slat is used for the
twenty-six-degree-deflected slat. The methods of training or subsets of the data have the same
patterns as shown in Figure 6.8, however, cases twenty-eight through fifty-four are used instead
(refer to Figure 6.2) and are shown in Figure 6.20. After training the neural networks with the
nine different methods and predicting the aerodynamic coefficients, the means and standard
deviations of the rms errors for each individual method of training are calculated. The mean
rms errors, show the same trends as in the previous slat deflection. Method 1 has the lowestCl
rms error, however, Methods 8 and 9 have about the same error as Method 1 forCl. Methods 8
and 9 have the lowestCd rms errors. Again, if only approximately 50% of the configurations
are used to train the neural networks, then Methods 5 and 7 should be used. The standard devi-
ation of the rms errors for the twenty-six-degree-deflected slat is shown in Figure 6.22. The
same trends are seen as was previously described. By comparing the values of the rms errors for
the two different slat deflections airfoils, it is shown that the six-degree-deflected slat has lower
means and standard deviation of the rms errors. The high-lift physics of the multi-element air-
foils with these two different slat deflections are discussed and compared in the next subsection.

0 1 2 3 4 5 6 7 8 9 10
method

0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

st
an

da
rd

 d
ev

ia
tio

n
Cl

Cd

Cm

Figure 6.19 Standard deviation of the rms errors for subsets of the training data for six-
degree slat deflection.

76

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

δf = 53.0 deg.

28

31

34

37 46

40 49

43 52

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

δf = 49.0 deg.

29 38 47

32 41 50
35 44 53

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

δf = 38.5 deg.

30 39 48

33 42 51
36 45 54

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

28

31

34

37 46

(40) (49)

(43) (52)

29 38 47

32 (41) (50)

35(44) (53)

30 39 48

33 (42) (51)

36 (45) (54)

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

(28)

31
(34)

37 (46)

(40) 49

43 (52)

(29) 38 (47)

32 (41) 50
(35) 44 (53)

(30) 39 (48)

33 (42) 51
(36) 45 (54)

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

28

(31)

34

(37) 46

40 (49)

(43) 52

29 (38) 47

(32) 41 (50)

35 (44) 53

30 (39) 48

(33) 42 (51)

36 (45) 54

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

28

(31)

34

(37) 46

40 (49)

(43) 52

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

(29) 38 (47)

32(41) 50
(35) 44 (53)

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

30 (39) 48

(33) 42 (51)

36 (45) 54

a) Method 1

b) Method 2

c) Method 3

d) Method 4

e) Method 5

Figure 6.20 Training data subsets forδs = 26 (shaded boxes represent cases that are
included in the training set whereas the cases in the white boxes and parentheses are omitted).

°

77

6.3.3 High-Lift Physics

In order to understand the physics of this complex flow, the pressure distributions are plot-
ted and compared for standard cases with slat deflection of 6 and 26 degrees. The high-lift set-
ting for the first case is , gaps = 2.0%c, ols = -0.05%c, , gapf = 2.1%c,
olf = 1.0%cat and the second high-lift setting is , gaps = 2.0%c, ols =
-0.05%c, , gapf = 2.1%c, olf = 1.0%cat . Figure 6.23a shows the slat,
main, and flap elements for both configurations. As a reminder, the main element is the same

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

(28)

31

(34)

37 (46)

(40) 49

43 (52)

29 (38) 47

(32) 41 (50)

8 (44) 53

(30) 39 (48)

33 (42) 51
(36) 45 (54)

δf = 53.0 deg. δf = 49.0 deg. δf = 38.5 deg.

i) Method 9

h) Method 8

f) Method 6

g) Method 7

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

28

(31)

34

(37) 46

40 (49)

(43) 52

(29) 38 (47)

32 41 50
(35) 44 (53)

30 (39) 48

(33) 42 (51)

36 (45) 54

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

28

31

(34)

37 46

40 (49)

(43) 52

(29) 38 (47)

32 41 (50)

35 44 53

30 (39) 48

33 42 51
(36) 45 54

0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap 0.4 1.0 1.5

1.5

2.1

2.7

ol
gap

28

31

34

37 46

40 (49)

(43) 52

(29) 38 (47)

32 41 (50)

35 44 53

30 (39) 48

33 42 51
(36) 45 54

Figure 6.20(continued) Training data subsetsδs = 26 (shaded boxes represent cases that are
included in the training set whereas the cases in the white boxes and parentheses are omitted).

°

δs 6.0°= δ f 38.5°=
α 10.0°= δs 26.0°=

δ f 53.0°= α 10.0°=

78

for both configurations. For the six-degree-deflected slat case, the flap element as well as the
slat element are deflected less than in the other configuration. The pressure distribution is dif-
ferent for both cases for all elements. First, the six-degree-deflected slat configuration has the
flow attached for all three elements as seen in Figure 6.23b. The suction pressure on the slat is
larger than in the higher slat deflection case. On the contrary, the suction pressure is lower on
the main element than the configuration. There are interesting features on the flap
element. The sharp spike at the trailing edge (also seen in the slat elements) occurs from the
sharp point at the trailing edge of the flap geometry. The numerical grid comes to a sharp corner
at the trailing edge, the flow must accelerate at this point causing the pressure to drop. The mul-
tiple spikes that are located at the leading-edge of the flap element are associated with the orig-
inal definition of the geometry. The flap at this region is faceted due to the high curvature. The
pressure spikes are representative of what the flow is actually doing. The flow is turning around
at these facets and accelerating. Second, the airfoil shows that the flow is separated
for the slat and flap elements. This is common for the configurations with the higher slat deflec-
tion. The flowfields for the configurations with are severely separated and thus the
numerical data that is used to train the neural networks is not predicted as accurately because
the aerodynamics vary so dramatically for the different configurations. The data for the six-
degree-deflected slat is better behaved and thus less noisy. The twenty-six-degree-deflected slat

0 1 2 3 4 5 6 7 8 9 10
method

0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

m
ea

n
R

M
S

 e
rr

or
Cl

Cd

Cm

Figure 6.21 Mean rms errors for subsets of the training data for twenty-six-degree slat
deflection.

δs 26.0°=

δs 26.0°=

δs 26.0°=

79

configurations have extremely high flap deflection angles which are well beyond the normal
flight envelope. The flow is severely separated at the higher deflected flaps. Consequently, the
neural networks do a better job of learning and predicting the flowfield of the more benign six-
degree-deflected slat airfoil.

6.3.4 Example of Neural Network Prediction

The neural network’s ability to predict the aerodynamics of a high-lift rigging that is not
included in the training set is tested by training the neural network with Method 8 which con-
tains 70% of the full training set and comparing the predicted values (denoted by an open
square in Figure 6.24) with the INS2D calculated values (denoted by a filled diamond Figure
6.24). The neural networks were used to predict the aerodynamics of the airfoil with a flap
high-lift setting of , gapf = 2.4%c, olf = 1.1%cwhich is not used to train the neural
networks as shown in Figure 6.24. The lift coefficient versus angle of attack is shown in Figure
6.24a and the neural network does accurately (to within 1.5% ofCl) predictCl for all angles of
attack tested. In this case, the pressure difference rule predicted to be the location
of maximum lift. Thus, the neural network was only tested from to . The

0 1 2 3 4 5 6 7 8 9 10
method

0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

st
an

da
rd

 d
ev

ia
tio

n
Cl

Cd

Cm

Figure 6.22 Standard deviation of the rms errors for subsets of the training data for twenty-
six-degree slat deflection.

δ f 27.0°=

α 10.0°=
α 0.0°= α 10.0°=

80

Figure 6.23 Comparison of slat deflection aerodynamics: ,gaps = 2.0%c, ols = -

0.05%c, , gapf = 2.1%c, olf = 1.0%c, and ,gaps = 2.0%c,

ols = -0.05%c, , gapf = 2.1%c, olf = 1.0%c

−0.5 0.0 0.5 1.0 1.5
x/c

−1.00

−0.50

0.00

0.50

1.00

y

δs = 6.0
δs =26.0

a) High-lift settings

−0.3 −0.1 0.1 0.3 0.5 0.7 0.9 1.1 1.3
x/c

−18.0

−16.0

−14.0

−12.0

−10.0

−8.0

−6.0

−4.0

−2.0

0.0

2.0

4.0

Cp

δs = 6.0
δs = 26.0

b) Pressure distribution

δs 6.0°=

δ f 38.5°= α 10.0°= δs 26.0°=

δ f 53.0°= α 10.0°=

81

Figure 6.24 Comparison of aerodynamic characteristics for ,gapf = 2.4%c, olf =

1.1%c which is not in the training set.

0.0 2.0 4.0 6.0 8.0 10.0 12.0
angle of attack

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Cl

INS2D
NN

a) Lift versus angle of attack

0.0 2.0 4.0 6.0 8.0 10.0 12.0
angle of attack

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Cd

INS2D
NN

b) Drag versus angle of attack

δ f 27.0°=

82

Figure 6.24(continued) Comparison of aerodynamic characteristics for , gapf =

2.4%c, olf = 1.1%c which is not in the training set.

0.0 2.0 4.0 6.0 8.0 10.0 12.0
angle of attack

−0.80

−0.70

−0.60

−0.50

−0.40

−0.30

−0.20

−0.10

0.00

Cm

INS2D
NN

c) Pitching moment versus angle of attack

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Cl

40.0

60.0

80.0

100.0

120.0

140.0

160.0

L/D

INS2D
NN
Clnn/Cdnn

d) Lift-to-Drag ratio

δ f 27.0°=

83

neural network did not predict the drag coefficient exactly right as is seen in Figure 6.24b, how-
ever, the neural network did predict the same trend as the calculated INS2D values. The neural
network under-predicted drag for all angles of attack except where it predicted the
same value as the numerical value. The pitching moment prediction has the same trends as the
numerical data as illustrated in Figure 6.24c. The neural network slightly over-predicted the
numerical data at all angles of attack. The lift-to-drag ratio prediction does not show the same
trends as the INS2D calculated values since it does not predict the dip inL/D that is seen atCl
= 2.75. There is good agreement between the neural network prediction and the numerical data
for Cl = 2.16 and for . Some of the error might by caused by the fact that the
neural networks are trained with 250 iterations, but the learning curves in Figure 6.3 and Figure
6.4 show that the neural network to predictL/D accurately should be trained with at least 400
iterations.(L/D)nn is also calculated from and is also shown in Figure 6.24d (denoted
with an open circle) to test if the neural network to predictL/D is necessary. These predicted
values are inaccurate. This occurs because the drag coefficient was predicted inaccurately and
the errors are amplified in calculating . Overall, however, the neural networks accu-
rately predict the aerodynamics of a high-lift rigging that is not included in the training set that
contains only 70% of the data.

6.4 Optimizing Using Neural Nets

In order for computational fluid dynamics to be able to impact the aircraft design, the design
space needs to be easily searched for subsets of the design space specified by constraints, for
maximums or minimums, and/or for a specific set of design variables. By integrating an opti-
mizer to the enhanced design space capturing procedure that is developed with the neural net-
works, computational fluid dynamics data can now be readily accessible to the designers. The
optimization process that is used is discussed in detail in Section 5.3 and will be referred to as
optimization using neural networks.

The high-lift flap aerodynamics are optimized for the Flap-Edge airfoil by maximizing the
lift coefficient. The design variables in this study are chosen to be the flap deflection, gap, over-
lap, and angle of attack. The optimization is performed with and without constraining any of
the aerodynamic coefficients. The bounds on the design space are chosen to be the same as the
design space that are used to train the neural networks with the exception that the angle of
attack is bounded to (for the optimization cases performed without constraints)
since this is near the range where maximum lift is predicted to occur by the pressure difference
rule for most of the configurations. The bounds for the design variables are shown in Table 6.1
for the six-degree-deflected slat data. To start the optimization, the original values of the design
variables are arbitrarily chosen.

6.4.1 Optimization with Method 5 as Training Set

The optimization using the neural networks procedure is used to optimize the flap rigging
for the six-degree-deflected slat. The different methods of training the neural networks that are
discussed in Section 6.3 are used for the optimization. The optimal configurations, as well as
the prediction accuracy, are different for each training method. The first method that is used to
train the neural networks which are integrated with the optimizer is Method 5. As it has been

α 2.0°=

3.03 Cl 3.56< <

Clnn
Cdnn

⁄

Clnn
Cdnn

⁄

α 10.0°=

84

noted, Method 5 contains only 52% of the entire configurations. The results for five different
optimization runs are shown in Table 6.2. Each of these runs has different initial or starting val-
ues (orig) of the design variables (DV). Gradient-based optimizers do not guarantee that the
maximum which is found is the global maximum of the design space; it only guarantees an
improvement. Thus, different starting values of the design variables are used to search the
entire design space. The first optimization run, 5-A, has the initial design variables set to the
lower bounds. Whereas, the second run, 5-B, has the initial values set to the upper bounds of
the design space. In the third run, 5-C, the initial conditions are set to the average value of the
lower and upper bounds. The last two runs have arbitrary initial values to test different regions
of the design space. With this AI optimization process, the design space can be easily searched
with several optimization runs because each run only requires several seconds of CPU time. A
total of 34.7 CPU seconds are used to optimize these five runs. In this case, however, all 5 opti-
mization runs led to the same optimal configuration (mod). The optimal flap setting chosen by
the optimizer is ,gapf = 1.69%c, olf = 0.97%c, and . The flap deflec-
tion and angle of attack are at the upper bounds, whereas, the other two design variables are
free variables (the variable lies between the upper and lower bound).

The accuracy of the neural networks’ prediction is tested for both the initial and modified
configurations by generating the appropriate grid and computing the INS2D solution. Then the
predicted and computedCl are compared and the percent difference (∆%) is shown in Table 6.2.
Run 5-A has zero error in predicting the originalCl. Runs 5-B and 5-C have errors of -0.28%
and 0.31%, respectively. However, Runs 5-D and 5-E have prediction errors greater than the
acceptable error. The maximum lift for the optimized configuration predicted by the neural net-
work is , however, the actual lift coefficient predicted by INS2D is . The
neural network overpredictedCl by 3.82%. For these reasons, the neural networks should prob-
ably be trained with a data set that contains more information on the aerodynamics of this air-
foil. Also, the pressure difference of the modified configuration, , is much
higher than the value of which is used to predict maximum lift. This will have
an negative impact on the accuracy of prediction of the neural networks. The aerodynamics of
this configuration is post-stall (or post maximum lift) and the neural networks are trained with
data only containing information on the aerodynamics up to maximum lift. Since the bound on
angle of attack is chosen to be an average value of where maximum lift occurs, it may influence
the region where the optimizer is forced to look for the maximum. This will be discussed in
greater detail in this chapter. Also, a procedure that is developed and tested to correct this is dis-

Table 6.1 Design Space forδs = 6.0 degrees

Design
Variables

Lower
Bound

Upper
Bound

δf 25.0 38.5

gapf 1.5 2.7

overlapf 0.4 1.5

α 0 10

δ f 38.5°= α 10.0°=

Cl 4.27= Cl 4.11=

Cpdiff
15.7–=

Cpdiff
13.0–=

85

cussed.

To get a better understanding of the flow physics, the pressure distribution of the modified
and original configurations for optimization Run 5-B are examined. Figure 6.25a shows the

Table 6.2 Optimization Results forδs = 6 degrees with Method 5 as the Training Set

Run DV orig mod
Cl
orig
NN

Cl
orig

INS2D

∆%
orig

Cl
mod
NN

Cl
mod

INS2D

∆%
mod

∆Cp diff
mod

INS2D

CPU
(sec)

5-A δf 25.0 38.5 2.04 2.04 0.0 4.27 4.11 3.82 -15.7 6.03

gapf 1.5 1.69

olf 0.4 0.97

α 0.0 10.0

5-B δf 38.5 38.5 3.55 3.56 -0.28 4.27 4.11 3.82 -15.7 4.41

gapf 2.7 1.69

olf 1.5 0.97

α 10.0 10.0

5-C δf 32.0 38.5 3.21 3.20 0.31 4.27 4.11 3.82 -15.7 9.32

gapf 2.1 1.69

olf 0.95 0.97

α 5.0 10.0

5-D δf 30.0 38.5 3.06 2.96 3.30 4.27 4.11 3.82 -15.7 5.82

gapf 1.9 1.69

olf 0.75 0.97

α 4.0 10.0

5-E δf 27.0 38.5 2.53 2.47 2.40 4.27 4.11 3.82 -15.7 9.13

gapf 2.1 1.69

olf 0.5 0.97

α 2.0 10.0

86

modified and original flap positions in relation to the main element trailing edge. The flap
deflections are the same, but the gap and overlap are smaller for the modified flap setting. Fig-
ure 6.25b shows the pressure distribution of the slat, main, and flap elements in a solid line for
the modified configuration and a dashed line for the original configuration. The basic shape of
the Cp curves are similar for slat and main elements for both configurations. The flow is
attached for both the slat and main elements. The suction pressure on the modified slat and
main elements are clearly larger than the original configuration resulting in greater lift. How-
ever, there are greater differences between the original and modified flap elements. The spike at
the trailing-edge and the multiple spikes at the leading-edge are representing the actual flow
physics as was discussed earlier (refer to Figure Figure 6.23b). When designing the high-lift
system, the goal is to achieve maximum lift without causing separation. The highest lift will not
occur with flow separation on the elements. Figure 6.25 shows the original flap element to be
separated, thus the airfoil is not capable of holding maximum loads. The modified flap, how-
ever, is attached and allows more lift to be carried by all elements.

6.4.2 Optimization with Method 8 as Training Set

Next, Method 8 which contains 70% of the entire training set is used to train the neural net-
works that are integrated with the NPSOL optimizer to see if the accuracy can be improved. As
is discussed above, this training method has low prediction errors and would save 30% of com-
puter resources when compared with Method 1. The optimization results are shown in Table 6.3
for five different optimization runs. The five optimization runs are started with the same initial
design variables as the previous optimization runs. As shown in Table 6.3, there are two differ-
ent values of maximum lift that are found in these five runs. Runs 8-A and 8-E found the maxi-
mum lift coefficient to be for the flap rigging of ,gapf = 2.7%c,andolf
= 0.74%cat . This lift coefficient is only an improvement from the original and not
the global maximum. The best improvement of the lift coefficient has a modified value of is

and the corresponding modified design variables are ,gapf = 1.74%c,
andolf = 0.4%c at . In this case, the flap deflection and angle of attack are at the
upper bound and overlap is at the lower bound. The modified gap is a free variable. The flap set-
ting is shown in Figure 6.26a for the case with the highest improvement and is compared to the
original flap setting. The flap deflection is the same as the original but the gap and overlap are
smaller. The pressure coefficients on the surface of the airfoils are plotted in Figure 6.26b for
the modified and original configurations for optimization Run 8-B. Similar features and trends
are shown here as was discussed in the previous results. The pressure distribution again has
larger suction pressure for the modified elements than the original. There are only slight
changes on the pressure distribution of the bottom surface. More importantly, the modified flap
flow is attached whereas the flow on the original flap is separated. This results in the modified
airfoil being able to carry more loads and produce more lift.

The accuracy of the neural network to predict theCl of the original configurations did
improve for Method 8 as shown in Table 6.3. The error in the prediction for the original geom-
etry is good and is within the acceptable error. As is seen, the error is as low as 0.10% and the
highest error is only 1.53%. The neural-net-predicted-modifiedCl has a slightly higher error but
is also within the acceptable range (2% and lower). Here, the highest is 1.95% and the lowest is
0.76%. This is very good considering that only 70% of the training data is used to train the neu-
ral networks to predict the aerodynamics of the multi-element airfoil and that the CPU time is

Cl 3.77= δ f 30.7°=
α 10.0°=

Cl 4.18= δ f 38.5°=
α 10.0°=

87

−0.3 −0.1 0.1 0.3 0.5 0.7 0.9 1.1 1.3
x/c

−18.0

−16.0

−14.0

−12.0

−10.0

−8.0

−6.0

−4.0

−2.0

0.0

2.0

4.0

Cp

Mod
Orig

0.80 0.90 1.00 1.10 1.20 1.30
x/c

−0.30

−0.20

−0.10

0.00

0.10

0.20

y

Main
Mod Flap
Orig Flap

Figure 6.25 Optimization results for Run 5-B with modified configuration of ,

gapf = 1.69%c, olf = 0.97%cand original configuration of ,gapf = 2.7%c, olf =

1.5%cat .

δ f 38.5°=

δ f 38.5°=

α 10.0°=

a) Optimized Flap Rigging

b) Pressure Distribution

88

only a few seconds (also shown in Table 6.3). Once the neural networks are trained, this optimi-
zation procedure can be performed with about 5 seconds of CPU time on a SGI workstation
with R4000 processor. To optimize all five cases, less than 25 seconds of CPU time is required.

6.4.3 Optimization with Method 9 as Training Set

Table 6.3 Optimization Results forδs = 6 degrees with Method 8 as the Training Set

Run DV orig mod
Cl
orig
NN

Cl
orig

INS2D

∆%
orig

Cl
mod
NN

Cl
mod

INS2D

∆%
mod

∆Cp
diff
mod

INS2D

CPU
(sec)

8-A δf 25.0 30.7 2.03 2.03 -0.29 3.77 3.74 0.76 -13.08 4.81

gapf 1.50 2.70

olf 0.40 0.74

α 0.0 10.0

8-B δf 38.5 38.5 3.52 3.56 -1.15 4.18 4.10 1.95 -13.42 3.91

gapf 2.70 1.74

olf 1.50 0.40

α 10.0 10.0

8-C δf 32.0 38.5 3.15 3.20 -1.53 4.18 4.10 1.95 -13.42 4.87

gapf 2.10 1.74

olf 0.95 0.40

α 5.0 10.0

8-D δf 30.0 38.5 2.96 2.96 0.10 4.18 4.10 1.95 -13.42 6.67

gapf 1.90 1.74

olf 0.75 0.40

α 4.0 10.0

8-E δf 27.0 30.7 2.5 2.47 1.17 3.77 3.74 0.80 -13.08 4.64

gapf 2.10 2.70

olf 0.50 0.74

α 2.0 10.0

89

−0.3 −0.1 0.1 0.3 0.5 0.7 0.9 1.1 1.3
x/c

−18.0

−16.0

−14.0

−12.0

−10.0

−8.0

−6.0

−4.0

−2.0

0.0

2.0

4.0

Cp

Mod
Orig

0.80 0.90 1.00 1.10 1.20 1.30
x/c

−0.30

−0.20

−0.10

0.00

0.10

0.20

y

Main
Mod Flap
Orig Flap

Figure 6.26 Optimization results for Run 8-B with modified configuration of ,

gapf = 1.74%c, olf = 0.4%cand original configuration of , gapf = 2.7%c, olf =

1.5%cat .

δ f 38.5°=

δ f 38.5°=

α 10.0°=

a) Optimized Flap Rigging

b) Pressure Distribution

90

Method 9 was also found to be a good method in training the neural networks. Thus, the
optimization procedure is next performed with Method 9 to train the neural networks. The same
initial design variable values are used as in the previous study as shown in Table 6.4. Again,
two different local maximums are found that have improved lift coefficients. The smallest local

Table 6.4 Optimization Results forδs = 6 degrees with Method 9 as the Training Set

Run DV orig mod
Cl

orig
NN

Cl
orig

INS2D

∆%
orig

Cl
mod
NN

Cl
mod

INS2D

∆%
mod

∆Cp
diff

mod
INS2D

CPU
(sec)

9-A δf 25.0 38.5 2.04 2.04 0.0 4.13 4.03 -2.56 -14.8 6.9

gapf 1.5 2.01

olf 0.4 0.558

α 0.0 10.0

9-B δf 38.5 38.5 3.54 3.56 -0.56 4.11 4.00 -2.72 -14.5 3.3

gapf 2.7 2.04

olf 1.5 1.5

α 10.0 10.0

9-C δf 32.0 38.5 3.19 3.20 -0.31 4.11 4.00 -2.72 -14.5 6.9

gapf 2.1 2.04

olf 0.95 1.5

α 5.0 10.0

9-D δf 30.0 38.5 3.02 2.96 2.03 4.11 4.00 -2.72 -14.5 5.5

gapf 1.9 2.04

olf 0.75 1.5

α 4.0 10.0

9-E δf 27.0 38.5 2.51 2.47 1.62 4.11 4.00 -2.72 -14.5 6.0

gapf 2.1 2.04

olf 0.5 1.5

α 2.0 10.0

91

maximum is found using the initial values of the design variables of Runs 9-B through 9-E. The
modified high-lift rigging is ,gapf = 2.04%c, olf = 1.5%c,and (Figure
6.27a) and has . The largest improvement inCl for this particular study is just
slightly higher at . The modified values of the design variables for this case are

, gapf = 2.01%c, olf = 0.56%c, and (Figure 6.27a). The flap deflection
for both instances is optimal at the upper bound. The modified gaps are free variables and close
to each other, whereas the overlaps are quite different. The smallest local maximum has the
overlap at the upper bound whereas the larger local maximum has it as a free variable. Both
configurations have the angle of attack to be optimal at the upper bound. The pressure distribu-
tions are plotted in Figure 6.27b. The original configuration was initially at (plotted
in a dotted line) but in order to compare the pressure distributions the original configuration
result is also plotted at (in a dashed line). The pressure distribution for the original
airfoil at has small suction pressures on the slat and main elements. The modified
airfoil has larger suction pressure peaks than the original configuration which accounts for the
additional lift that is created. The original configuration has separated flow on the flap element,
whereas the modified flap has attached flow. Thus, the modified airfoil is capable of withstand-
ing more loads and thus has higher lift.

The errors in the accuracy of the prediction are higher for Method 9 than Method 8
eventhough Method 9 contains 74% of the entire data whereas Method 8 contains 70%. The
initial configurations again have lower errors than the modified configurations. In Run 9-A
there is zero error and only one case has an error greater than 2%. All of the modified configu-
rations have prediction errors greater than 2%. The pressure difference rule is applied to these
cases. Examining the outcome, it is shown that the pressure difference exceeds the allowable
value of . All the pressure differences are equal to or greater than

. This is also seen in Figure 6.27b where the pressure difference for the slat is
quite high. Thus, the angle of attack upper bound is set too high and for these partic-
ular configurations is beyond maximum lift as defined in this current study. Thus, the neural
networks are not properly trained to predict the aerodynamics in this range. This did not occur
in the previous optimization case that uses Method 8 to train the neural networks. The configu-
rations that are found to be optimal using Method 8 have pressure differences just slightly
greater than .

6.4.4 Optimization of Twenty-Six Degree Deflected Slat

The optimization procedure using neural networks is also applied to the twenty-six-degree-
deflected slat training data. The flap deflection and angle of attack bounds are different since
the range of the flap deflection angles are higher as shown in Table 6.5. In some optimization
runs, the upper bound on the angle of attack is increased to 20 degrees because the pressure dif-
ference at is much lower than (this was determined during the opti-
mization process). The results for this data set are shown in Table 6.6. Runs 1-26A and 1-26B
use Method 1 to train the neural networks and the bounds on angle of attack are ten and twenty
degrees, respectively. Likewise, Runs 9-26A and 9-26B are trained with Method 9 and again
the bounds on the angle of attack are ten and twenty degrees, respectively. All optimization
runs are started with the design variables set to the average of the bounds.

δ f 38.5°= α 10.0°=
Cl 4.11=

Cl 4.13=
δ f 38.5°= α 10.0°=

α 0.0°=

α 10.0°=
α 0.0°=

Cpdiff
13.0–=

Cpdiff
14.5–=

α 10.0°=

Cpdiff
13.0–=

α 10.0°= Cpdiff
13.0–=

92

−0.3 −0.1 0.1 0.3 0.5 0.7 0.9 1.1 1.3
x/c

−18.0

−16.0

−14.0

−12.0

−10.0

−8.0

−6.0

−4.0

−2.0

0.0

2.0

4.0

Cp

Mod
Orig α = 0
Orig α = 10

0.80 0.90 1.00 1.10 1.20 1.30
x/c

−0.30

−0.20

−0.10

0.00

0.10

0.20

y

Main
Mod Flap
Orig Flap

Figure 6.27 Optimization result for Run 9-A with modified configuration of ,

gapf = 2.01%c, olf = 0.56%c,and and original configuration of ,

gapf = 1.5%c, olf = 0.4%c.

δ f 38.5°=

α 10.0°= δ f 25.0°=

b) Pressure Distribution

a) Optimized Flap Setting

93

First, when the angle of attack upper bound is equal to ten degrees, the configurations that
are chosen are different for each training method as shown in Table 6.6. The pressure difference
for these cases are small around . For this slat deflection, is not near
maximum lift but is still in the linear range as shown in Figure 6.28. Thus, the lift coefficients
are 14% lower than the cases where the bound on the angle of attack is increased.

Second, the bound on the angle of attack is increased to and both optimization

Table 6.5 Bounds of Design Variables for δs = 26.0 degrees

Design
variables

Lower
Bound

Upper
Bound

δf 38.5 53.0

gapf 1.5 2.7

overlapf 0.4 1.5

α 0 10 or 20

Cpdiff
3.5–= α 10.0°=

0.0 4.0 8.0 12.0 16.0 20.0
angle of attack (degrees)

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Cl

Figure 6.28 Lift coefficient versus angle of attack for optimization Run 1-26B;
, gapf = 2.1%c, and olf = 0.4%c.δ f 38.5°=

α 20.0°=

94

runs 1-26B and 9-26B found the same configuration to be optimal, ,gapf = 1.5%c,
olf = 1.4%c, and . Each run predicts a different value of . TheCl calculated by
INS2D is 4.73 but optimization Run 1-26B predicted which has an error of -0.63%.
On the other hand, Run 9-26B predicted the modified lift coefficient to be which is
overpredicted by 0.85%. The modified angle of attack is which is a free variable.
This is the first case where angle of attack is not optimal at the upper bound. The pressure dif-
ference for this configuration is . This means that the optimizer did predict a
configuration near maximum lift. The computed lift coefficient is plotted against the angle of
attack in Figure 6.28. The lift curve appears to be bending over at the higher angles of attack.

δ f 38.5°=
α 18°= Clmax

Cl 4.70=
Cl 4.77=

α 18.0°=

Cpdiff
13.2–=

Table 6.6 Optimization Results forδs = 26 degrees

Run DV orig mod
Cl

orig
NN

Cl
orig

INS2D

∆%
orig

Cl
mod
NN

Cl
mod

INS2D

∆%
mod

∆Cp
diff

mod
INS2D

CPU
(sec)

1-
26A

δf 32.0 38.5 2.59 2.50 3.6 4.04 4.04 0.05 -3.52 4.9

gapf 2.10 1.50

olf 0.95 0.40

α 5.0 10.0

1-
26B

δf 32.0 38.5 2.59 2.50 3.6 4.70 4.73 -0.63 -13.2 6.0

gapf 2.10 2.10

olf 0.95 0.40

α 5.0 18.0

9-
26A

δf 32.0 38.5 2.65 2.50 6.0 4.03 4.01 0.50 -3.47 6.3

gapf 2.10 1.62

olf 0.95 1.50

α 5.0 10.0

9-
26B

δf 32.0 38.5 2.65 2.50 6.0 4.77 4.73 0.85 -13.2 3.9

gapf 2.10 2.10

olf 0.95 1.40

α 5.0 18.0

95

The optimizer chose the flap deflection to be optimal at for both the six-degree
and twenty-six degree slat deflection airfoil. For the smaller slat deflection, was
the upper bound and for the larger slat deflection it is the lower bound. This shows that the
higher flap settings are not optimal since at some point increasing the flap deflection will
degrade performance. Run 1-26A predicts the maximum lift to occur at a flap setting of

, gapf = 1.5%c, olf = 0.4%c, and . The gap is the same as in Runs 1-26B
and 9-26B and the overlap is lower and is optimal at the lower bound. On the other hand, Run
9-26A has the following optimal setting, ,gapf = 1.62%c, olf = 1.5%c, and

. The gap and overlap are slightly higher for this optimization run.

The prediction errors are high for the lift coefficients of the original configurations but are
excellent for the lift coefficients of the modified configurations. The prediction errors of the
modified configurations range from 0.0 - 0.85%. The neural network did accurately predict the
modified lift coefficients. The CPU time required to optimize all four cases was only 21.17 sec-
onds.

The original and modified flap settings are shown in Figure 6.29a for optimization Run 1-
26B. The modified flap has a larger deflection angle, a smaller overlap, and has the same gap as
the original setting. The pressure distribution for Run 1-26B is shown in Figure 6.29b. The
pressure distribution shows that the modified flap has attached flow and the original flap has
separated flow. Again, the modified configuration has larger suction pressure on all elements
which also contributes to the greater lift. Comparing Figure 6.29 with Figure 6.27, shows the
differences in theCp curve for the different slats. In the higher-deflected slat, the slat is working
well and inducing highCp on the main element which results in higher lift.

6.4.5 Optimization With Large Design Space

The next optimization study that is conducted is to train the neural networks with a larger
design space for the six-degree deflected slat. The design space was increased to include deflec-
tion angles between and . The gap and overlap bounds remained the
same as shown in Table 6.7. The neural networks are trained with 45 different configurations
including combinations of the following: ,29.0, 38.5, 49.0, and53.0degrees;gapf
= 1.5, 2.1,and2.7%c; olf = 0.4, 1.0,and1.5%c.The pressure difference rule is applied to the
data set and the neural networks are trained with 250 iterations as before. Since the higher flap

δ f 38.5°=
δ f 38.5°=

δ f 38.5°= α 10°=

δ f 38.5°=
α 10.0°=

δ f 25.0°= δ f 53.0°=

Table 6.7 Design Variable Bounds forδs = 6.0 with 5 values of flap deflection

Design
variables

Lower
Bound

Upper
Bound

δf 25.0 53.0

gapf 1.5 2.7

overlapf 0.4 1.5

α 0 10

δ f 25.0=

96

−0.3 −0.1 0.1 0.3 0.5 0.7 0.9 1.1 1.3
x/c

−20.0

−18.0

−16.0

−14.0

−12.0

−10.0

−8.0

−6.0

−4.0

−2.0

0.0

2.0

4.0

Cp

Mod
Orig

0.80 0.90 1.00 1.10 1.20 1.30
x/c

−0.30

−0.20

−0.10

0.00

0.10

0.20

y

Main
Mod Flap
Orig Flap

Figure 6.29 Optimization results for Run 1-26B with modified configuration of
, gapf = 2.1%c, olf = 0.4%c and original configuration of ,gapf =

2.%c1, olf = 0.95%cat .

δ f 38.5°= δ f 32.0°=

α 18°=

a) Optimized Flap Setting

b) Pressure Distribution

97

deflections are greater than the common flight envelope, the optimizer is tested in choosing the
optimal position. The optimization results for this study are shown in Table 6.8. The same five
initial conditions are used as in the previous studies. The optimization produced three different
optimal flap configurations which were found to have maximumCl. The smallest local maxi-

Table 6.8 Optimization Results forδs = 6 degrees with large design space and Method 1 as
the Training Set

Run DV orig mod
Cl
orig
NN

Cl
orig

INS2D

∆%
orig

Cl
mod
NN

Cl
mod

INS2D

∆%
mod

∆Cp diff
mod

INS2D

CPU
(sec)

1
-5A

δf 25.0 38.5 2.04 2.04 0.00 3.76 3.74 0.53 -13.1 8.38

gapf 1.50 2.52

olf 0.40 0.60

α 0.0 10.0

1
-5B

δf 38.5 53.0 3.13 3.13 0.0 3.34 3.33 0.30 -11.7 4.82

gapf 2.70 1.5

olf 1.50 1.21

α 10.0 10.0

1
-5C

δf 32.0 36.2 3.29 3.20 2.81 4.14 4.01 3.24 -14.9 9.5

gapf 2.10 1.92

olf 0.95 0.89

α 5.0 10.0

1
-5D

δf 30.0 36.2 3.06 2.96 3.34 4.14 4.01 3.24 -14.9 6.8

gapf 1.90 1.92

olf 0.75 0.89

α 4.0 10.0

1
-5E

δf 27.0 36.2 2.51 2.47 1.62 4.14 4.01 3.24 -14.9 7.58

gapf 2.10 1.92

olf 0.50 0.89

α 2.0 10.0

98

mum has the following setting ,gapf = 1.5%c, olf = 1.21%c, and with
Cl = 3.33. This is clearly not the best improvement and is surprising that the optimizer found
this to be the maximum since has highly separated flow on the flap. The next larg-
est local maximum chosen is ,gapf = 2.52%c, olf = 0.60%c, and giv-
ing Cl = 3.74. Three runs chose the optimal position to be ,gapf = 1.92%c, olf =
0.89%c, and (Figure 6.30a) withCl = 4.013. This maximum has three design vari-
ables as free variables and as expected the angle of attack is at the upper bound. The pressure
difference is which is slightly greater than the value used to predict maximum
lift. For this reason, the neural network prediction error is high and is above 3%. The CPU time
that is used to optimize these five runs is 37.04 seconds. The pressure distribution is shown in
Figure 6.30b. The original configuration is shown for and . The original con-
figuration at the higher angle of attack has a pressure distribution that is similar to the modified
configuration. The modified configuration does have slightly higher suction pressure peak than
the original configuration, thus it has greater lift. In this case, the flow on both the original and
modified flaps have separated flow.

6.4.6 Constrained Optimization

In order to test whether the accuracy would get better if the modified configurations were
restricted within the empirically predicted pre-stall range, the upper bound on the angle of
attack design variable is removed. Instead a constraint is placed on the value of the pressure dif-
ference, . An additional neural network is trained with flap deflection, gap, over-
lap, and angle of attack to predict the pressure difference. In this case, the entire training data is
used to predict , whereas the neural networks that predict the aerodynamic coefficients are
trained with data only including pre-stall data that is predicted by the pressure difference rule.
The design variables of the optimization runs remain the same as does the objective function.
The results of the case that found the best improvement by the optimizer is shown in Table 6.9
for Run 9-C-∆Cp. The modified design variables are ,gapf = 2.08%c, olf =
0.40%c,and . As expected, the modified angle of attack is lower than in the previous
case that specified the upper bound to be . The neural network predicted the pres-
sure difference value to be exactly what is calculated with the INS2D solution. The neural net-
work predicted the modified lift coefficient to be over 2% of the actual INS2D value.

To further reduce the prediction error in the modified lift coefficient, the INS2D data from
this optimal case is added to the training data. The neural networks are then re-trained with this
additional information in hope that it will improve the accuracy. Again, the neural network that
predicts the lift coefficient is trained with the data set that includes the data points that are at or
below the maximum lift. The neural network that predicts the pressure difference is trained
with the entire training set. The optimization runs are again constrained and the best improve-
ment is shown in Table 6.9 denoted by Run 9-C-opt. The values of the modified design vari-
ables are different for the flap deflection, gap, and angle of attack and are the same for the
overlap as in the previous case. The modified lift coefficient predicted by the neural network
happens to be the same as in the previous optimization run, however, the INS2D value of the
modified coefficient is different and the error is reduced to only 0.51%. Thus, by constraining
the design space that the optimizer is allowed to search and by adding one data point near max-
imum lift to the training data, the prediction error is reduced and all constraints are met. The
predicted and actual pressure difference are close and differ by only 0.4. It should be noted that

δ f 53.0°= α 10.0°=

δ f 53.0°=
δ f 38.5°= α 10.0°=

δ f 36.2°=
α 10.0°=

Cpdiff
14.9–=

α 5°= α 10°=

Cpdiff
13.0–≥

Cpdiff

δ f 37.5°=
α 9.0°=

α 10.0°=

99

0.80 0.90 1.00 1.10 1.20 1.30
x/c

−0.30

−0.20

−0.10

0.00

0.10

0.20

y

Main
Mod Flap
Orig Flap

−0.3 −0.1 0.1 0.3 0.5 0.7 0.9 1.1 1.3
x/c

−18.0

−16.0

−14.0

−12.0

−10.0

−8.0

−6.0

−4.0

−2.0

0.0

2.0

4.0

Cp

Mod
Orig α = 5
Orig α = 10

Figure 6.30 Optimization results for Run 1-5C with modified configuration of ,

gapf = 1.92%c, olf = 0.89%c,and and original configuration of ,gapf

= 2.1%c, olf = 0.95%c.

δ f 36.2°=

α 10°= δ f 32.0°=

a) Optimized Flap Rigging

b) Pressure Distribution

100

the CPU time required to run a constraint optimization run is increased, however, it is still less
than 28 seconds as shown in Table 6.9.

To get a better understanding of the flow physics, the pressure distribution of the modified
and original configurations for optimization Run 9-C-opt are examined. Figure 6.31a shows the
modified and original flap positions in relation to the main element trailing edge. Figure 6.31b
shows the pressure distribution of the slat, main, and flap elements in a solid line for the modi-
fied configuration. The original configuration was initially at (plotted in a dotted
line) but in order to compare the pressure distributions, the original configuration is also plotted
at (in a dashed line). The basic shape of theCp curves are similar for all elements for
both configurations. The flow is attached for all elements. The suction pressure on the modified
elements are clearly larger than the original configuration resulting in greater lift. Again, there
are interesting features on the original and modified flap elements that are discussed in a previ-
ous case.

6.4.7 Summary of Optimization Runs

In summary, the neural network does accurately predict the lift coefficient for training

Table 6.9 Constrained Optimization Results for Method 9 as the Training Set

Run DV orig mod
Cl
orig
NN

Cl
orig

INS2D

∆%
orig

Cl
mod
NN

Cl
mod

INS2D

∆%
mod

∆Cp
diff

mod
NN

∆Cp
diff

mod
INS2D

CPU
(sec)

9-
C-
∆Cp

δf 32.0 37.5 3.19 3.20 -0.31 3.94 3.86 2.07 -13.0 -13.0 27.3

gapf 2.10 2.08

olf 0.95 0.40

α 5.0 9.0

9-
C-
opt

δf 32.0 38.5 3.18 3.20 -0.63 3.94 3.92 0.51 -13.0 -13.4 26.1

gapf 2.10 1.5

olf 0.95 0.4

α 5.0 8.30

α 5.0°=

α 8.3°=

101

0.80 0.90 1.00 1.10 1.20 1.30
x/c

−0.30

−0.20

−0.10

0.00

0.10

0.20

y

Main
Mod Flap
Orig Flap

−0.3 −0.1 0.1 0.3 0.5 0.7 0.9 1.1 1.3
x/c

−18.0

−16.0

−14.0

−12.0

−10.0

−8.0

−6.0

−4.0

−2.0

0.0

2.0

4.0

Cp

Mod
Orig α = 5.0
Orig α = 8.3

a) Optimized Flap Setting

b) Pressure Distribution

Figure 6.31 Optimization results for Run 9-C-opt (flap settings denoted in Table 6.9).

102

Methods 8 and 9, however, Method 5 has high prediction errors. The optimizer and neural net-
works are successfully integrated to predict maximum lift within the specified design space.
Only Method 5 predicted the same maximum for the five different starting locations of the

design space. All other design methods predicted different maximum lift coeffi-
cients. This procedure does not guarantee a global maximum, but instead an improvement from
the original objective function. Thus, it is important to search the design space in several loca-
tions to search for the best improvement as is illustrated. Using the empirical constraint
together with an iterative optimization process which re-inserted the optimized configuration
into the training data set and repeated the optimization reduced the prediction error. Method 5
predicted the largest maximum lift coefficient of for , ,
gapf = 1.69%c, olf = 0.97%c,and . The maximum lift coefficient for the twenty-six
degree slat is for ,gapf = 2.1%c, olf = 0.4%c, and .

6.5 Benefits of New Process

The aerodynamic design space of a multi-element airfoil is very complex and may have many
local maximums and minimums. When a gradient-based optimizer is used to search the design
space, many starting points need to be examined in order to find the best improvement. The
advantage of using neural networks in the optimization process versus the traditional optimiza-
tion process (Figure 6.32) is the turn around time and the CPU time that is saved for many opti-
mization runs. In the traditional optimization process, every time that the design variables are
perturbed, the gradient needs to be calculated to determine the search direction. In order to cal-
culate the gradient, a grid needs to be generated and the aerodynamic coefficients must be cal-
culated by solving the flowfield with INS2D. Eventhough, the traditional optimization method
will have a shorter turn around time and CPU time used for one or two optimization runs, there
is no guarantee that one or two optimization runs will find the best improvement. On the con-
trary, the neural networks will have an overall turn around time and CPU time for many optimi-
zation runs and there is no major increase in overall or CPU time for additional runs. Once the
neural networks are trained, only 5-10 seconds are required for each additional optimization
run. The CPU time that is used in this optimization study for the different training methods
used is shown in Figure 6.33. Also plotted in this figure are the calculated CPU time that would
of been used if the traditional optimization process is used. The CPU time for the traditional
method is estimated by using the same number of gradient calls that is used in the neural net-
work optimization procedure. Then for each iteration it is estimated that the CPU time will con-
sist of 4.3 seconds to generate a grid and 600 seconds for each flow solution on a CRAY C90. It
is estimated that 600 seconds will be required to converge the solution because more time is
required to converge a solution near maximum lift. If more than three optimization runs are
executed, then the neural network optimization procedure should be used. The neural network
optimization procedure curves are nearly flat. Thus, the major contributor to the CPU time in
the neural network optimization is training the neural networks to learn and to predict the aero-
dynamics of the airfoil. Many more optimization runs can be executed with this procedure
without requiring large additional amount of CPU time. On the other hand, the traditional opti-
mization procedure will continue to increase at a fairly linear rate as shown.

Another advantage of using the neural network optimization procedure is reduction of cost.
There are many factors contributing to the total cost of a research job including the cost of the

δs 6.0°=

ClINS2D
4.11= δs 6.0°= δ f 38.5°=

α 10.0°=
ClINS2D

4.73= δ f 38.5°= α 18.0°=

103

engineering support or personnel, computer resources, and wall clock turn around time. One of
the largest contributors to turn around time is waiting for a computer job to be completed espe-
cially if the job executes within a batch queue. The CFD cases in this current study are executed
on a CRAY C90 or J90 computer and then the neural networks and optimizer are executed on a
workstation. At the Numerical Aerospace Simulation Facility (NAS) at NASA Ames Research
Center, there are three CRAY supercomputers that are available which are referred to as Eagle,
von Neumann, and Newton. The average turn around time for an eight-hour batch job for a one
month period for these three machines is shown in Figure 6.34. The average turn around time
for these three computers, 23.45 hours, is used for all calculations in this study.

To calculate the cost that is related to the two types of optimization procedures considered,
it is assumed that an experienced engineer is executing both optimization processes. This engi-
neer is familiar with the different components to each process such as grid generation, flow
simulation, neural networks, and optimization. The set-up time is assumed to be equal for both
processes. The engineer is a full time equivalent of $200,000 per year and there are 2080 work-
ing hours in a year. Thus, there is a charge of $96.15 per hour for an engineer. Another expense
which must be considered is computer resources. For this comparison, assume the cost of a

Grid Generation

Flow Solver

 Initial Airfoil Geometry

Calculate Objective Function

?
Minimum
Objective
 Function

Modified
 Wing

Perturb
Design

Variables

Initial Design Variables

NO YESGradient
 Search

INS2D

Figure 6.32 Traditional optimization process [75].

104

computing hour is $39.00 and an average turn around time for an eight-hour-queue-job is 23.45
hours.

First, the cost of the neural network optimization procedure is calculated. As a reminder,
Methods 1, 5, 8, and 9 contain 27, 14, 19, and 20 configurations, respectively. A grid is gener-
ated for each configuration included in the training method and solutions are calculated for 10
different angles of attack for each configuration. The grid generation requires 4.3 CPU seconds
per grid and 269 CPU seconds per flow solution (the convergence time is low since these solu-
tions are below maximum lift). The CPU time required to train each method and used to opti-
mize all five optimization runs (see Table 6.10) must also be added to the total wall clock time
and the charged CPU time. The two additional constrained optimization runs for Method 9 are
shown separate from the baseline optimization runs to illustrate the additional cost that is
required. The total cost of the neural network optimization procedure is shown Table 6.10. The
major element in the cost is the time and computer resources required to set-up the training
matrix data. Consequently, it is very important to determine the level of prediction accuracy
that is required and to choose the proper method to train the neural networks. By choosing
Method 8 which has excellent prediction accuracy instead of Method 1, 30% of the total cost is
reduced.

0 1 2 3 4 5 6 7 8
Optimization Runs

0

25

50

75

100

125

150

175

200

C
P

U
 ti

m
e

(h
ou

rs
)

NN optimization
Traditional

Figure 6.33 Comparison of CPU time required for traditional and neural network
optimization procedures.

Method 1

Method 5

Method 9

Method 8
Method 1

Method 5

Method 9
Method 8

105

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0
days

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0
ho

ur
s VN

Eagle
Newton

Figure 6.34 Average turn around time for an eight hour batch queue on CRAY computers for
31 days at NASA Ames Research Center.

Table 6.10 Neural Network Optimization Procedure Cost

Method Configurations
Training

CPU time
(seconds)

Optimization
CPU time
(seconds)

Total Cost
(dollars)

1 27 281 263 6466.50

5 14 207 93.5 3353.50

8 19 229 197.3 4551.66

9 20 232 176.6 4790.16

9-Constrain
(2 runs)

- - 409.29 10.93

106

Second, the cost of the traditional optimization procedure is calculated with the same
assumptions. The wall clock time and the CPU hours charged are calculated based on the num-
ber of iterations (or gradient calls) that are made by the optimizer for each optimization run. For
each method that is used in the neural network optimization procedure, the traditional optimiza-
tion cost is calculated for the same five optimization starting runs. The total turn around (wall
clock) time that the engineer waits for the job to be finished is multiplied by $96.15 and is
added to the total CPU hours that are charged. The traditional optimization procedure is per-
formed on the CRAY computer in the batch queue. This is one of the reasons that the cost is
higher than the neural network optimization procedure as shown in Table 6.11. In the tradi-
tional optimization procedure, the cost to execute the two additional constrained optimization
runs is very high. In contrast, the additional cost in the neural network optimization procedure
is insignificant when compared to the cost to train the neural networks.

The total costs are compared in Figure 6.35 for the two optimization procedures. For five
optimization runs for each training method and the two additional constrained optimization
runs, the neural network optimization procedure does cost less. Again, if only one or two opti-
mization runs are performed, then the traditional optimization procedure would cost less, how-
ever, for multiple runs, the neural network optimization procedure uses less resources. Also,
constrained optimization is very costly because of the high number of gradient calls that are
required to find the minimum objective function that satisfies all the constraints. Method 5 had
the lowest cost for the neural network optimization procedure whereas Method 8 had the least
cost for the traditional optimization procedure. The biggest advantage now is that many more
optimization runs can be performed with the neural network optimization procedure while only
adding seconds to the CPU time and turn around time as demonstrated by the addition of the
constrained optimization. Thus, the cost would slightly increase but this is insignificant when
compared to the traditional method. On the contrary, if additional optimization runs are per-
formed with the traditional optimization procedure then both the CPU time and turn around
time required would increase which would then drive the cost up in a linear fashion.

Table 6.11 Traditional Optimization Procedure Cost

Method
CPU
Hours

Number of
8 hour jobs

Wall Clock
(hours)

Total Cost
(dollars)

1 94.31 11.79 276.45 30,261.21

5 93.13 7.83 272.96 29,876.98

8 62.65 11.64 183.61 20,097.70

9 110.31 13.79 328.30 35,391.83

9-Constrain
(2 runs)

70.57 8.82 206.82 22,638.84

107

Clearly, the neural network optimization procedure should be used for design because sev-
eral designs with different constraints or design space can be considered without driving the
cost and turn around time up. Also, once a design is chosen, the design space can be altered and
the optimization procedure can now be performed again.

0 1 2 3 4 5 6
Method

0

5000

10000

15000

20000

25000

30000

35000

40000

co
st

 (
$)

NN
Traditional

Figure 6.35 Comparison of total cost for the neural network and traditional optimization
procedure.

1 5 8 9 9-constraint

109

Chapter 7

Conclusions

A numerical investigation of the ability of artificial neural networks to predict the high-lift
aerodynamics of a multi-element airfoil has been performed. An AI enhanced design process
was developed which integrates neural network and optimizer technologies together with a
computational database. This process is modular, allowing insertion of emerging neural net-
work, optimization, and CFD techniques within its framework. This design process was tested
for a typical high-lift design problem to optimize flap rigging for maximum lift. The ability of
the neural networks to accurately predict the aerodynamic coefficients, lift, drag, and moment
coefficients for any high-lift flap deflection, gap, and overlap, was demonstrated for both com-
putational and experimental training data sets. Different methods of training the neural net-
works have been investigated to reduce the amount of data that is required to teach the neural
networks to predict the aerodynamics precisely.

7.1 Summary

Multiple input, single output networks were trained using the NASA Ames variation of the
Levenberg-Marquardt algorithm. The neural networks were first trained with wind tunnel
experimental data of the three-element airfoil to test the validity of the neural networks. The
networks did accurately predict the lift coefficients of the individual main and flap elements.
However, there was noticeable error in predicting the slat lift coefficient. The prediction error in

is most likely caused by the sparse training data since there were only five different con-
figurations used to train the neural networks. This resulted in high error in predicting the total
lift coefficient since the total lift of the airfoil is the sum of the lift from the individual elements.
This results from the fact that the errors are also summed and amplify in the prediction of the
total lift coefficient.

Computational data is next used to train the neural networks to test if computational data
can be used to train the neural networks. The neural networks were used to create a computa-
tional data base which may be used to impact design. Solutions were obtained by solving the
two-dimensional Reynolds-averaged incompressible Navier-Stokes equations using the
INS2D-UP code. The flowfield was assumed to be fully turbulent and the Spalart-Allmaras tur-
bulence model was used. Two data sets were generated for two different slat deflections each
consisting of configurations with different flap deflection, gap, and overlap. The data set con-

Clslat

110

sisted of twenty-seven configurations. Subsets of this data set were generated to reduce the
amount of data that is required to train the neural networks to accurately predict the aerody-
namics.

The computational data set had to be pre-processed to reduce the prediction error at or
beyond maximum lift. In high-lift aerodynamics, both experimentally and computationally, it is
difficult to predict the maximum lift, and at which angle of attack it occurs. In order to predict
maximum lift and the angle of attack where it occurs, a maximum lift criteria was needed. The
pressure difference rule, which states that there exists a certain pressure difference between the
peak suction pressure and the pressure at the trailing edge of the element at the maximum lift
condition, was applied to all three elements. For this configuration, it was found that only the
pressure difference on the slat element was needed to predict maximum lift. By applying the
pressure difference rule, the prediction errors of the neural networks were reduced.

The amount of data that is required to train the neural networks was reduced to allow com-
putational fluid dynamics to impact the design phase. Different subsets of the training methods
were created by removing entire configurations from the six-degree-deflected slat training set.
The mean and standard deviations of the root-mean-square prediction errors were calculated to
compare the different methods of training. Even though the entire computational data set was
sparse, it was reduced to only 70% of the entire data. It was found that the trained neural net-
works predicted the aerodynamic coefficients within an acceptable accuracy defined to be the
experimental error. The aerodynamic data had to be represented in a nonlinear fashion so that
the neural networks could learn and predict accurately. By carefully choosing the training sub-
set, the computational data set was even further reduced to contain only 52% of the configura-
tions. These trained neural networks also predicted the aerodynamic coefficients within the
acceptable error. Thus, the computational data required to accurately represent the flowfield of
a multi-element airfoil was reduced to allow computational fluid dynamics to be a usable tool
for design.

This same procedure was followed in the twenty-six-degree-deflected slat computational
data. This data set had higher deflected flaps which were actually out of the normal flight enve-
lope. The same trends were found except that the prediction error was much higher in this train-
ing set than the previous one. This was caused by the fact that the flowfield was severely
separated with the higher deflected flaps. Thus, the training data representing the flowfield was
noisy which leads to prediction errors.

The computational design space needs to be easily searched for areas of interest such as
maximums or optimal points. An optimization study to search the design space was conducted
by using neural networks that were trained with computational data. Artificial neural networks
have been successfully integrated with a gradient based optimizer to minimize the amount of
data required to completely define the design space of a three-element airfoil. The accuracy of
the neural networks’ prediction was tested for both the initial and modified configurations by
generating the grid and computing the INS2D-UP solution.

The high-lift flap aerodynamics were optimized for a three-element airfoil by maximizing
the lift coefficient. The design variables were flap deflection, gap, and overlap. The bounds of
the design space had to be the same as the bounds that were used to train the neural networks

111

since the neural networks are good interpolators and bad extrapolators. Multiple optimization
runs were conducted in order to find the best improvement.

The different training subsets were used in the optimization with neural networks process.
The prediction errors were below the acceptable value when only 70% of the computational
data set was used to train the neural networks. The highest maximum lift was found with the
following high-lift flap setting for : ,gapf = 1.69%c, olf = 0.97%c,and

which produced a . The optimal flap setting for the twenty-six
degree slat is ,gapf = 2.1%c, olf = 0.4%c, and with .
The pressure distribution of the original and modified configurations were compared. The mod-
ified configurations had larger suction pressures which contributed to the additional lift that was
generated. Several, modified flaps had attached flow whereas the original flaps had separated
flow. This resulted in the modified airfoil producing more lift.

Initial studies showed that although optimization could be conducted using a sparse train-
ing dataset, unconstrained optimization of the high-lift system produced unacceptably high
errors. Due to the complexity of the high-lift flow physics near the maximum lift condition, an
empirically based constraint, which identifies configurations at the maximum lift condition
within the computational database, was required in order to achieve accurate neural net predic-
tions for this design problem. Using the empirical constraint together with an iterative optimi-
zation procedure which re-inserted the optimized configuration into the training database and
repeated the optimization produced an optimal configuration with only 0.5% error.

A cost analysis was conducted by comparing the optimization with neural networks proce-
dure to the traditional optimization procedure. It was found that the optimization with neural
networks procedure resulted in a reduction of turnaround time, CPU time, and cost if more than
two optimization runs were conducted. After the neural networks were trained and integrated
with the optimizer, many optimization runs were executed with only using an average of 6.5
CPU seconds per run and 30 turnaround seconds per run.

Overall, the neural networks were trained successfully to predict the high-lift aerodynamics
of a multi-element airfoil. The neural networks were also able to predict the aerodynamics suc-
cessfully when only 52-70% of the entire computational data set was used to train. The neural
networks were integrated with an optimizer thus allowing a quick way to search the design
space for points of interest. Optimization with neural networks reduced the turnaround time,
CPU time, and cost of multiple optimization runs. Therefore, neural networks are an excellent
tool to allow computational fluid dynamics to impact the design space.

7.2 Recommendations

Based on the results of this investigation, several recommendations can be made. Different
types of neural networks should be studied to see if the prediction error can be further reduced.
Adaptive neural networks which learn as they predict should be examined. These networks may
lead to faster training time, smaller training data sets, and may generalize better for new test
samples. Also, they may produce better fidelity with the same amount of training data used as
in the current neural networks. If the training time is reduced and the training set can be further

δs 6.0°= δ f 38.5°=
α 10.0°= ClINS2D

4.11=
δ f 38.5°= α 18.0°= ClINS2D

4.73=

112

reduced than it was in this study, then this will further reduce the cost of the optimization proce-
dure.

Second, when optimizing a multi-element airfoil or wing for maximum lift, the constrained
optimization process that is described in Section 6.4.6 should be performed. The pressure dif-
ference rule should be applied to define the maximum lift and the angle of attack where it
occurs. The design space is then constrained to include only the angles of attack at maximum
lift and lower. By constraining the design space that the optimizer is allowed to search and by
adding one data point near maximum lift to the training data, the prediction error is reduced and
all constraints are met.

Next, a hybrid training data set consisting of experimental and computational data needs to
be pursued. This would require correction factors and correlating factors to be generated to cor-
rectly join the data sets together. The design space would be enlarged and would be better
defined. Thus, the neural networks can be trained with the more detailed training data set. Fur-
ther, computational fluid dynamics for predicting high-lift flowfields needs to be improved,
including turbulence modeling. This will reduce some of the requirements of correction and
correlating factors.

Another recommendation would be to integrate an artificial intelligence tool such as genetic
algorithms to help direct the optimizer to find the global maximum in fewer optimization runs.
Lastly, the optimization with neural networks procedure should be executed for a three-dimen-
sional body. The optimization with neural networks procedure should even further reduce the
cost in a three-dimensional optimization problem than the traditional procedure since three-
dimensional computations require more resources. The ability of the neural networks that were
trained with computational data to predict three-dimensional aerodynamic data needs to be
investigated.

113

Bibliography

[1] Ying, S. X.: High Lift Challenges and Directions for CFD. AIAA/NPU AFM Conference

Proceedings, June 1996.

[2] LaMarsh, W. J.; Walsh, J. L.; and Rogers, J. L.: Aerodynamic Performance Optimization

of a Rotor Blade Using a Neural Network as the Analysis. AIAA Paper 92-4837, Sept.

1992.

[3] Faller, W. E.; and Schreck, S. J.: Real-Time Prediction of Unsteady Aerodynamics:

Application for Aircraft Control and Maneuverability Enhancement. IEEE Transactions

on Neural Networks, vol. 6, no. 6, Nov. 1995, pp. 1461 - 1468.

[4] McMillen, R. L.; Steck, J. E.; and Rokhsaz, K.: Application of an Artificial Neural Net-

work as a Flight Test Data Estimator. J. Aircraft, vol. 32, no. 5, Sept. - Oct. 1995, pp.

1088 - 1094.

[5] Steck, J. E.; and Rokhsaz, K.: Some Applications of Artificial Neural Networks in Mod-

eling of Nonlinear Aerodynamics and Flight Dynamics. AIAA Paper 97-0338, Jan. 1997.

[6] Rai, M. M.; and Madavan, N. K.: Application of Artificial Neural Networks to the Design

of Turbomachinery Airfoils. AIAA Paper 98-1003, Jan. 1998.

[7] Jorgensen, C. C.; and Ross, J. C.: System and Method for Modeling the Flow Perfor-

mance Features of an Object. U. S. Patent No. 5,649,064, July 1997.

[8] Ross, J. C.; Jorgenson, C. C.; and Norgaard, M.: Reducing Wind Tunnel Data Require-

ments Using Neural Networks. NASA TM 112193, May 1997.

114

[9] Storms, B.: Private communication, July 1997.

[10] Anderson, D. A.; Tannehill, J. C.; Pletcher, R. H.: Computational Fluid Dynamics and

Heat Transfer. Hemisphere Publishing Co., 1984.

[11] Rumsey, C. L.; Gatski, T. B.; Ying, S. X.; and Bertelrud, A.: Prediction of High-Lift

Flows Using Turbulent Closure Models. AIAA Paper 97-2260, June 1997.

[12] Spalart, P. R.; and Allmaras, S. R.: A One-Equation Turbulence Model for Aerodynamic

Flows. AIAA Paper 92-0439, Jan. 1992.

[13] Rogers, S.: Progress in High-Lift Aerodynamic Calculations. AIAA Paper 93-0194, Jan.

1993.

[14] Rogers, S. E.; Menter, F. R.; Durbin, P. A.; and Mansour, N. N.: A Comparison of Turbu-

lence Models in Computing Multi-Element Airfoil Flows. AIAA Paper 94-0291, Jan.

1994.

[15] Ashby, D. L.: Experimental and Computational Investigation of Lift-Enhancing Tabs on a

Multi-Element Airfoil. NASA TM 110432, Dec. 1996.

[16] Jones, K. M.; Biedron, R. T.; and Whitlock, M.: Application of a Navier-Stokes Solver to

the Analysis of Multielement Airfoils and Wings Using Multizonal Grid Techniques.

AIAA Paper 95-1855, June 1995.

[17] Ko, S.; and McCroskey, W. J.: Computations of Unsteady Separating Flows Over an

Oscillating Airfoil. AIAA Paper 95-0312, Jan. 1995.

[18] Rogers, S.; and Kwak, D.: An Upwind-Differencing Scheme for the Incompressible

Navier-Stokes Equations. NASA TM 101051, Nov. 1988.

[19] Rogers, S.; and Kwak, D.: Upwind Differencing Scheme for the Time-Accurate Incom-

pressible Navier-Stokes Equations. AIAA J., vol. 28, no. 2, Feb. 1990, pp. 253-262.

[20] Chorin, A.: A Numerical Method for Solving Incompressible Viscous Flow Problems. J.

115

of Computational Physics, vol. 2, 1967, pp. 12-16.

[21] Rogers, S. E.: Numerical Solution of the Incompressible Navier-Stokes Equations.

NASA TM 102199, Nov. 1990.

[22] Agosta, R. M.: Numerical Analysis of Tangential Slot Blowing on a Generic Chined

Forebody. NASA TM 108845, Sept. 1994.

[23] Roe, P. L.: Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes.

J. of Computational Physics, vol. 43, 1981 pp. 357-372.

[24] Rogers, S. E.: A Comparison of Implicit Schemes for the Incompressible Navier-Stokes

Equations With Artificial Compressibility. AIAA Paper 95-0567, Jan. 1995.

[25] Rogers, S.: Manual for the OVERMAGG Script System. NASA Ames Research Center,

July 1997.

[26] Chan, W. M.; Chui, I. T.; and Buning, P. G.: User’s Manual for the HYPGEN Hyperbolic

Grid Generator and the HGUI Graphical User Interface. NASA TM 108791, Oct. 1993.

[27] Suhs, N. E.; and Tramel R. W.: PEGSUS 4.0 User’s Manual. AEDC-TR-91-8, Nov. 1991.

[28] Public Affairs Office, NASA Ames Research Center: Exploring Aeronautics: A Curricu-

lum in Aeronautics for the 4th through 6th Grades. NASA Ames Research Center, 1997.

[29] Kung, S. Y.: Digital Neural Networks. PTR Prentice-Hall, Inc., 1993.

[30] Mehrotra, K.; Mohan, C. K.; and Ranka, S.: Elements of Artificial Neural Networks. MIT

Press, 1997.

[31] Neural Computing: A Technology Handbook for Professional II/Plus and NeuralWorks

Explorer. NeuralWare Inc., 1996.

[32] Cowan, J. D.; and Sharp, D. H.: Neural Nets. Technical Report, Mathematics Depart-

ment, University of Chicago, 1987.

116

[33] Grant, I.; and Pan, X.: An Investigation of the Performance of Multi Layer, Neural Net-

works Applied to Analysis of PIV Images. Experiments in Fluids, vol. 19, 1995, pp. 159

- 166.

[34] Zeidenberg, M.: Neural Networks in Artificial Intelligence. Ellis Horwood Limited,

1990.

[35] Widrow, R.; and Lehr, M.: 30 Years of Adaptive Neural Networks: Perceptron, Madaline,

and Backpropagation. Proceedings of the IEEE, vol. 78, 1990, pp. 1415 - 1442.

[36] Rumelhart, D. E.; McClelland, J. L.; and the PDP Group: Parallel Distributed Processing,

Vol. I and II. MIT Press, 1986.

[37] Karayiannis, N. B.; and Venetsanopoulos, A. N.: Artificial Neural Networks Learning

Algorithms, Performance Evaluation, and Applications. Kluwer Academic Publishers,

1993.

[38] Rashevsky, N.: Mathematical Biophysics. University of Chicago Press, 1938.

[39] McCulloch, W. S.; and Pitts, W.: A Logical Calculus of Ideas Immanent in Nervous

Activity. Bulletin of Mathematical Biophysics, vol. 5, 1943, pp. 115 - 133.

[40] Hebb, D.: The Organization of Behavior. John Wiley, 1949.

[41] Gabor, D.: Communication Theory and Cybernetics. IRE Transactions on Circuit Theory,

CT-1, 1954, pp. 19 - 31.

[42] Rosenblatt, F.: The Perceptron, A Probabilistic Model for Information Storage and Orga-

nization in the Brain. Psychology Review, vol. 62, 1958, pp. 386 - 408.

[43] Widrow, B.; and Hoff, M.: Adaptive Switching Circuits. Western Electronic Show Con-

vention, Convention Record, Institute of Radio Engineers (nowIEEE), vol. 4, 1960, pp.

96 - 104.

[44] Rosenblatt, F.: Principles of Neurodynamics: Perceptrons and the Theory of Brain Mech-

117

anisms. Spartan, 1961.

[45] Minsky, M. L.; and Papert, S. A.: Perceptrons. MIT Press, 1969.

[46] Dreyfus, S.: The Numerical Solution of Variational Problems. J. of Mathematical Analy-

sis and Applications, vol. 5, no. 1, 1962, pp. 30 - 45.

[47] Bryson, A. E.; and Ho, Y. C.: Applied Optimal Control. Blaisdell, New York, 1969.

[48] Anderson, J. A.; A Simple Neural Network Generating an Associative Memory. Mathe-

matical Bioscience, vol. 14, 1972, pp. 197 - 220.

[49] Anderson, J. A.; Silverstein, J. W.; Ritz, S. A.; and Jones, R. S.: Distinctive Features, Cat-

egorical Perceptron, and Probability Learning: Some Applications of a Neural Model.

Psychological Review, vol. 84, 1977, pp. 413 - 451.

[50] Werbos, P.: Beyond Regression: New Tools for Prediction and Analysis in the Behavioral

Sciences. Ph. D. Dissertation, Harvard University, Cambridge, May 1974.

[51] Grossberg, S.: Classical and Instrumental Learning by Neural Networks. Progress in The-

oretical Biology, vol. 3, 1977, pp. 51 - 141.

[52] McClelland J.; and Rumelhart, D.: Explorations in Parallel Distributed Processing. MIT

Press, Cambridge, 1988.

[53] Kohonen, T.: Self-Organization and Associative Memory. Springer-Verlag, New York,

1988.

[54] Ackley, D. H.; Hinton, G. E.; and Sejnowski, T. J.: A Learning Algorithm for Boltzmann

Machines. Cognitive Sciences, vol. 9, 1985, pp. 147 - 169.

[55] Kirkpatrick, S.; Gelatt, C. D.; and Vecchi, M. P.: Optimization by Simulated Annealing.

Science, vol. 220, 1983, pp. 671 - 680.

[56] Gallant, S. I.: Optimal Linear Discriminants. Proceedings of the Eighth International

118

Conference on Pattern Recognition. Paris, 1986, pp. 849 - 852.

[57] Mah, R.: Intelligent Controller for Neurosurgery. Research and Technology 1996, NASA

TM 112195, Sept. 1997, pp.126-127.

[58] Jorgensen, C. C.: Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural

Networks. NASA TM 112198, May 1997.

[59] Levenberg, K.: A Method for the Solution of Certain Non-linear Problems in Least

Squares. Quarterly Applied Mathematics, vol. 2, 1944, pp. 164 - 168.

[60] Marquardt, D. W.: An Algorithm for Least Squares Estimation of Nonlinear Parameters.

Journal of Society of Industrial Applied Mathematics, vol. 11, no. 2, June 1963, pp. 431 -

441.

[61] Walsh, G. R.: Methods of Optimization. John Wiley & Sons, London, 1975.

[62] Kollias, S.; and Anastassiou, D.: An Adaptive Least Squares Algorithm for the Efficient

Training of Artificial Neural Networks IEEE Transactions on Circuits and Systems, vol.

36, no. 8, Aug. 1989, pp. 1092 - 1101.

[63] Norgaard, M.; Jorgensen, C. C.; and Ross, J. C.: Neural-Network Prediction of New Air-

craft Design Coefficients. NASA TM 112197, May 1997.

[64] Fletcher, R.: Practical Methods of Optimization. John Wiley & Sons, New York, 1987.

[65] Dulikravich, G.: Aerodynamic Shape Design and Optimization: Status and Trends. J.

Aircraft, vol. 29, no. 6, Nov. 1992, pp. 1020-1026.

[66] Balling, R. J.; and Sobieszczanski-Sobieski, J.: Optimization of Coupled Systems: A

Critical Overview of Approaches. NASA CR 195019, Dec. 1994.

[67] van den Dam, R. F.; van Egmond, J. A.; and Slooff, J. W.: Optimization of Target Pres-

sure Distributions. Special Course on Inverse Methods for Airfoil Design for Aeronauti-

cal and Turbomachinery Applications. AGARD Report No. 780, Reference 3, Nov. 1990.

119

[68] Cheung, S.; Aaronson, P.; and Edwards, T.: CFD Optimization of a Theoretical Mini-

mum-Drag Body. J. Aircraft, vol. 32, no. 1, January 1995, pp. 193-198.

[69] Cosentino, G. B.; and Holst, T. L.: Numerical Optimization of Advanced Transonic Wing

Configurations. J. Aircraft, vol. 23, no. 3, May 1986, pp. 192-199.

[70] Ta’asan, S.; Kuruvila, G.; and Salas, M. D.: Aerodynamic Design and Optimization in

One Shot. AIAA Paper 92-0025, Jan. 1992.

[71] Reuther, J.; and Jameson, A.: Control Theory Based Airfoil Design for Potential Flow

and a Finite Volume Discretization. AIAA Paper 94-0499, Jan. 1994.

[72] Reuther, J.; and Jameson, A.: Aerodynamic Shape Optimization of Wing and Wing-Body

Configurations Using Control Theory. AIAA Paper 95-0123, Jan. 1995.

[73] Obayashi, S.; and Takanashi, S.: Genetic Optimization of Target Pressure Distributions

for Inverse Design Methods. AIAA Paper 95-1649, June 1995.

[74] Gill, P. E.; Murray, W.; Saunders, M. A.; and Wright, M. H.: User’s Guide for NPSOL

5.0: A Fortran Package for Nonlinear Programming. Dept. of Operations Research, Stan-

ford University, TR SOL 94, Stanford, CA, 1994.

[75] Greenman, R. M.; Cheung, S.; and Tu, E. L.: Coupled Navier-Stokes and Optimizer

Analysis of a Transonic Wing. J. Aircraft, vol. 35, no. 3, May 1998, pp. 362-369.

[76] Gill, P. E.; Murray, W.; Saunders, M. A.; and Wright, M. H.: User’s Guide for SOL/

QPSOL Version 3.2. Report SOL 84-5, Department of Operations Research, Stanford,

CA, 1984.

[77] Dennis, J. E., Jr.; and More, J. J.: Quasi-Newton Methods, Motivation and Theory. SIAM

Review, vol. 19, pp. 46-89.

[78] Valarezo, W. O.; and Chin, V. D.: Method of Prediction of Wing Maximum Lift. J. Air-

craft, vol. 31, no. 1, Feb. 1994, pp. 103-109.

120

[79] Fiddes, S. P.; Kirby, D. A.; Woodward, D. S.; and Peckham, D., H.: Investigation into the

Effects of Scale and Compressibility on Lift and Drag in the RAE 5m Pressurized Low-

Speed Wind Tunnel. Aeronautical J., vol. 89, Paper 1302, Mar. 1985, pp.93-108.

[80] Valarezo, W. O.; Dominik, C. J.; McGhee, R. J.; Goodman, W. L.; and Paschal, K. B.:

Multi-Element Airfoil Optimization for Maximum Lift at High Reynolds Numbers.

AIAA Paper 91-3332, Sept. 1991.

REPORT DOCUMENTATION PAGE

8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

Form Approved

OMB No. 0704-0188

12b. DISTRIBUTION CODE12a. DISTRIBUTION/AVAILABILITY STATEMENT

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

6. AUTHOR(S)

1. AGENCY USE ONLY (Leave blank)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT19. SECURITY CLASSIFICATION
 OF ABSTRACT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

17. SECURITY CLASSIFICATION
 OF REPORT

14. SUBJECT TERMS

13. ABSTRACT (Maximum 200 words)

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

NSN 7540-01-280-5500

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

11. SUPPLEMENTARY NOTES

Unclassified Unclassified

Unclassified — Unlimited
Subject Category 02

A-9811759

NASA/TM—1998-112233

Technical MemorandumJune 1998

Two-Dimensional High-Lift Aerodynamic Optimization
Using Neural Networks

Roxana M. Greenman

Ames Research Center
Moffett Field, CA 94035-1000

National Aeronautics and Space Administration
Washington, DC 20546-0001

5191042

146

A07

The high-lift performance of a multi-element airfoil was optimized by using neural-net predictions that were
trained using a computational data set. The numerical data was generated using a two-dimensional, incompress-
ible, Navier-Stokes algorithm with the Spalart-Allmaras turbulence model. Because it is difficult to predict
maximum lift for high-lift systems, an empirically-based maximum lift criteria was used in this study to determine
both the maximum lift and the angle at which it occurs. The “pressure difference rule,” which states that the
maximum lift condition corresponds to a certain pressure difference between the peak suction pressure and the
pressure at the trailing edge of the element, was applied and verified with experimental observations for this
configuration. Multiple input, single output networks were trained using the NASA Ames variation of the
Levenberg-Marquardt algorithm for each of the aerodynamic coefficients (lift, drag and moment). The artificial
neural networks were integrated with a gradient-based optimizer. Using independent numerical simulations and
experimental data for this high-lift configuration, it was shown that this design process successfully optimized flap
deflection, gap, overlap, and angle of attack to maximize lift. Once the neural nets were trained and integrated
with the optimizer, minimal additional computer resources were required to perform optimization runs with
different initial conditions and parameters. Applying the neural networks within the high-lift rigging optimization
process reduced the amount of computational time and resources by 44% compared with traditional gradient-
based optimization procedures for multiple optimization runs.

Neural networks, High-Lift, Optimization

Point of Contact: Roxana M. Greenman, Ames Research Center, MS 258-1, Moffett Field, CA 94035-1000;
 (650) 604-3997

